Abstract
This chapter on architectural glass focuses on the use of glass in buildings and structures. It covers a wide variety of glass applications ranging from its most frequent use in facade glazing systems to advanced applications of glass as a load-bearing material. The latter is a relatively young field of application and evolved from the early 1990s from simple beam applications to today's all-glass structures. An overview of flat glass products that are frequently applied in architecture is provided in Sect. 52.1. This includes a discussion of the related float glass production process, processing technologies, surface treatments, and glass functionalities such as insulation and fire resistant and switchable glazing. In addition to these flat glass products, which are most commonly applied in architecture, Sect. 52.2 discusses cast glass products. Cast glass products such as glass channels and glass blocks provide a different typology and offer a different architectural expression from flat glass products and are as such frequently used in exterior facades and interior separation walls. The application of glass in common facade systems and as a load-bearing material in structures is discussed in Sect. 52.3. This includes a reflection on the related design methodologies and safety concepts that deal with the brittle and, thus, inherently unsafe failure behavior of glass. Section 52.4 describes different typologies for connecting glass components such as glass facade panels or structural glass beams. This includes a discussion of classical mechanical connections and more recent adhesive bonding technologies that provide new opportunities for glass engineering. Section 52.5 discusses numerical modeling procedures that can be used in the design and engineering of glass in the architectural domain. Finally, an outlook for future developments in architectural glass is provided in Sect. 52.6.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. McGrath, A.C. Frost: Glass in Architecture and Decoration (Architectural Press, London 1961)
Pilkington website: http://www.pilkington.com/pilkington-information/about+pilkington/education/default.htm (consulted May 2017)
EN 572-2: Glass in Building – Basic Soda Lime Silicate Glass Products – Part 2: Float Glass (CEN, Brussels 2004)
J. Schneider: Glass strength in the borehole area of annealed float glass and tempered float glass, Int. J. Form. Process. 7(4), 523–541 (2004)
Äppert v. Schmertz, Schmertz v. Äppert: Decisions of the Commissioner of Patents and of the United States Courts in Patent and Trade-Mark Cases (Government Printing Office, Washington 1899) 77–81, 524–534
K. Kefallinos: Wire Glass: History of Technology and Development, M.Sc. Thesis (Columbia Univ., New York 2013)
EN 572-1: Glass in Building – Basic Soda Lime Silicate Glass Products – Part 1: Definitions and General Physical and Mechanical Properties (CEN, Brussels 2016)
EN 1748-1-1: Glass in Building – Special basic products – Borosilicate glasses – Part 1-1: Definition and general physical and medical properties (CEN, Brussels 2004)
Schott AG: Datasheet, SCHOTT Xensation, Chemical strengthened alumino-silicate glass, accessed May (2018), https://www.schott.com/d/xensation/74eaa741-621e-45e0-a9bb-06927f1bd1c7/schott-xensation-data-sheet-english-22052018.pdf
C.E. Inglis: Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Nav. Archit. 55, 219–230 (1913)
A.A. Griffith: The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)
H. Tada, P.C. Paris, G.R. Irwin: The Stress Analysis of Cracks Handbook, 3rd edn. (Wiley-Blackwell, Hoboken 2000)
A. Petzold, H. Marusch, B. Schramm: Der Baustoff Glas: Grundlagen, Eigenschaften, Erzeugnisse, Glasbauelemente, Anwendungen, 3rd edn. (Karl Hofmann, Schorndorf 1990)
S.M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass, J. Am. Ceram. Soc. 50(8), 407–414 (1967), https://doi.org/10.1111/j.1151-2916.1967.tb15145.x
T.A. Michalske, S.W. Freiman: A molecular mechanism for stress corrosion in vitreous silica, J. Am. Ceram. Soc. 66(4), 284–288 (1983)
EN 1863-1: Glass in Building – Heat Strengthened Soda Lime Silicate Glass - Part 1: Definition and Description (CEN, Brussels 2012)
EN 12150-1: Glass in Building – Thermally Toughened Soda Lime Silicate Safety Glass – Part 1: Definition and Description (CEN, Brussels 2015)
G.D. Quinn: Fractography of Ceramics and Glasses, NIST Recommended Practice Guide (NIST, Gaithersburg 2016), https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.960-16e2.pdf
D.R. Uhlmann, N.J. Kreidl: Glass Science and Technology 5: Elasticity and Strength in Glasses (Academic, Cambridge 1980)
J. Hilcken: Zyklische Ermüdung von thermisch entspanntem und thermisch vorgespannten Kalk-Natron-Silikatglas, Mechanik, Werkstoffe und Konstruktion im Bauwesen (Springer Vieweg, Heidelberg 2015)
D. Hull: Fractography: Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, Cambridge 1999)
J.H. Nielsen, J.F. Olesen, H. Stang: The fracture process of tempered soda-lime-silica glass, Exp. Mech. 49(6), 855–870 (2009), https://doi.org/10.1007/s11340-008-9200-y
L.H. Adams, E.D. Williamson: The annealing of glass, J. Frankl. Inst. 190, 597–632 (1920)
E.H. Lee, T.G. Rogers, T.C. Woo: Residual stresses in a glass plate cooled symmetrically from both surfaces, J. Am. Ceram. Soc. 48, 480–487 (1965)
O.S. Narayanaswamy: A model of structural relaxation in glass, J. Am. Ceram. Soc. 54, 491–498 (1971)
L. Daudeville, H. Carré: Thermal tempering simulation of glass plates: Inner and edge residual stresses, J. Therm. Stress. 21, 667–689 (1998)
W. Laufs, G. Sedlacek: Stress distribution in thermally tempered glass panes near the edges, corners and holes – Part 2 – Distribution of thermal stresses, Glas. Sci. Technol. 72, 42–48 (1999)
J.H. Nielsen, J.F. Olesen, P.N. Poulsen, H. Stang: Finite element implementation of a glass tempering model in three dimensions, Comput. Struct. 88, 963–972 (2010)
J.H. Nielsen, J.F. Olesen, P.N. Poulsen, H. Stang: Simulation of residual stresses at holes in tempered glass: A parametric study, Mater. Struct. 43, 947–961 (2010)
A. Aronen: Modelling of Deformations and Stresses in Glass Tempering, Ph.D. Thesis (Tampere Univ. of Technology, Tampere 2012)
S. Schula: Charakterisierung der Kratzanfälligkeit von Gläsern im Bauwesen – Characterisation of the Scratch Sensitivity of Glasses in Civil Engineering (Springer, Heidelberg 2015)
E. Ballantyne: Fracture of toughened glass wall cladding, Technical Report, Vol. 06.1-5 (CSIRO Division of Boulding Research, Melbourne 1961)
L. Merker: Zum Verhalten des Nickelsulfids im Glas, Glastech. Ber. 47(6), 116–121 (1974)
M. Swain: Nickel sulphide inclusions in glass: An example of microcracking induced by a volumetric expanding phase change, J. Mater. Sci. 16, 151–158 (1981)
A. Kasper: Nickelsulfid in Glas – Fortschritte der Glastechnik (Verlag der Deutschen Glastechnischen Gesellschaft, Offenbach 2003)
J. Schneider, J. Hilcken: Nickel sulfide (NiS)-induced failure of glass: Fracture mechanics model and verification by fracture data. In: Engineered Transparency, International Conference at Glasstec (2010) pp. 125–136
J. Schneider, J. Hilcken, A. Aronen, R. Karvinen, J.F. Olesen, J. Nielsen: Stress relaxation in tempered glass caused by heat soak testing, Eng. Struct. 122, 42–49 (2016)
J. Schneider, J.K. Kuntsche, S. Schula, F. Schneider, J.-D. Wörner: Glasbau – Grundlagen, Berechnung, Konstruktion (Springer, Heidelberg 2016)
M. Bergers, K. Natividad, S.M. Morse, H.S. Norville: Full scale tests of heat strengthened glass with ceramic frit, Glass Struct. Eng. 1, 261 (2016)
I. Maniatis, M. Elstner: Investigations on the mechanical strength of enamelled glass, Glass Struct. Eng. 1, 277 (2016)
EN ISO 12543: Laminated Glass and Laminated Safety Glass – Part 1: Definitions and Description of Component Parts (ISO 2011)
M. Kothe, B. Weller: Influence of environmental stresses to the ageing behaviour of interlayer. In: Challenging Glass 4 & COST Action TU0905 Final Conference, ed. by C. Louter, F. Bos, J. Belis, J.-P. Lebet (Taylor Francis, London 2014) pp. 439–446
J. Belis, P. Raes, G. Savinau: On the causes of optical defects in laminated glass. In: Proc. Glass Perf. Days, Tampere (2017) p. 401
EN 356: Glass in Building – Security glazing – Testing and Classification of Resistance Against Manual Attack (CEN, Brussels 2000)
Saint Gobain Glass: Memento Glashandbuch (Saint Gobain Glass, Stolberg 2005)
Sicurtec: sicurLITE: Highly Resistant Glass, produkt data sheet (Sicurtec, Mondsee 2011)
EN 1063: Glass in Building – Security Glazing – Testing and Classification of Resistance Against Bullet Attack (CEN, Brussels 2000)
EN 13541: Glass in Building – Security Glazing – Testing and Classification of Resistance Against Explosions Pressure (CEN, Brussels 2012)
C. Schittich, G. Staib, D. Balkow, M. Schuler, W. Sobek: Glass Construction Manual (Birkhäuser, Basel, Berlin 2012)
M.D. Knorr, J. Wieser, G. Geertz, S. Buddenberg, M. Oechsner, W. Wittwer: Gas loss of insulating glass units under load: Internal pressure controlled permeation test, Glass Struct. Eng. 1(1), 289–299 (2016)
S. Buddenberg, P. Hof, M. Oechsner: Climate loads in insulating glass units: Comparison of theory and experimental results, Glass Struct. Eng. 1(1), 301–313 (2016)
F. Feldmeier: Zur Berücksichtigung der Klimabelastung bei der Bemessung von Isolierglas bei Überkopfverglasungen, Stahlbau 65(8), 285–290 (1996)
F. Feldmeier: Belastung von Isoliergläsern durch Klimaschwankungen, Fenster Fassade 2, 41–52 (1984)
F. Feldmeier: Klimabelastung und Lastverteilung bei Mehrscheiben-Isolierglas, Stahlbau 75(6), 467–478 (2006)
F. Feldmeier: Bemessung von Dreifach-Isolierglas, Stahlbau 80, 75–80 (2011)
S.M. Morse, H.S. Norville: Comparison of methods to determine load sharing of insulating glass units for environmental loads, Glass Struct. Eng. 1(1), 315–329 (2016)
F. Zoller: Hohle Glasscheibe (Hollow pane of glass), German Patent 387655 (1924)
R. Collins, T. Simko: Current status of the science and technology of vacuum glazing, Solar Energy 62(3), 189–213 (1998)
J. Belis, B. Verhegghe, M. De Beule, R. van Impe: Evaluation of glass domes using PyFormex. In: Shell and Spatial Structures: Structural Architecture – Towards the Future Looking to the Past, Proc. of IASS Symposium, Venice (2007)
J. Bijster, C. Noteboom, M. Eekhout: Glass Entrance Van Gogh Museum Amsterdam, Glass Struct. Eng. 1, 205 (2016)
A. Lyons: Materials for Architects and Builders (Taylor Francis, London 2012)
A. Brykov, S. Petersburg: The use of colloidal silica solutions in the perspective technologies of fire-resistant glass and multi-layer decorative panels. In: Proc. Glass Process. Days, Tampere (2005)
A. Brykov: Aqueous jellies in the K20-Si02-H20 system and their use in technology of fire resistant glass. In: Proc. Glass Process. Days, Tampere (2007) pp. 350–351
V. Villari: A new generation of fire resistant glazing. In: Proc. Glass Process. Days, Tampere (2007) pp. 344–345
Y. Misawa, M. Hirota, S. Matsunobu: Post-applied film to improve the fire resistance of existing glass facades. In: Proc. Glass Perform. Days, Tampere (2011) pp. 277–280
Y. Misawa, M. Hirota, T. Ohta, S. Matsunobu: Post-applied film to improve the fire resistance of existing exterior windows. In: Proc. Glass Performa. Days, Tampere (2013) pp. 260–264
P. Nitz, A. Wagner: Schaltbare und regelbare Verglasungen. In: Bine Informationsdienst, Themeninfo I/02, ed. by J. Lang (Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, Eggenstein-Leopoldshafen 2002)
H. Wittkopf, M. Dittmar: Variable Sonnenschutzgläser – von den Grundlagen zur Praxis. In: Glasbau 2012, ed. by B. Weller, S. Tasche (Wilhelm Ernst, Berlin 2012) pp. 279–290
F. Oikonomopoulou, T. Bristogianni, F.A. Veer, R. Nijsse: The construction of the Crystal Houses façade: Challenges and innovations, Glass Struct. Eng. 3(1), 87–108 (2018)
C. Paech, K. Guppert: Innovative Glass Joints – the 11 March Memorial in Madrid. Challenging Glass Conference (IOS, Amsterdam 2008)
CWCT: Standard for Systemized Building Envelopes, Part 1 – Scope, Terminology, Testing and Classification (Centre for Window and Cladding Technology, Univ. of Bath, Bath 2005)
M. Patterson: Structural Glass Facades and Enclosures (Wiley, Hoboken 2011)
EOTA: ETAG 002 – Guideline for European Technical approval for Structural Sealant Glazing systems (SSGS) (European Organisation for Technical Assessment, Brussels 2001)
A. Hagl: Development and test logics for structural silicone bonding design and sizing, Glass Struct. Eng. 1, 131 (2016)
R. Ringli, T. Vogel: Load-bearing behavior of spliced glass beams under bending action, Glass Struct. Eng. 1, 61 (2016)
F. Oikonomopoulou, E.A.M. van den Broek, T. Bristogianni, F.A. Veer, R. Nijsse: Design and experimental testing of the bundled glass column, Glass Struct. Eng. 2(2), 183–200 (2017)
A. Snijder, R. Nijsse, C. Louter: Building and Testing Lenticular Truss Bridge with Glass-Bundle Diagonals and Cast Glass Connections. In: Challenging Glass Conference Proceedings, Vol. 6 (2018) pp. 647–660
prCEN-TS Structural Glass – Design and Construction Rules – Part 1: Basis of Design and Materials (CEN, Delft 2018)
EN 1990: Eurocode – Basis of Structural Design (CEN, Brussels 2010)
S. Schula, J. Schneider, M. Vandebroek, J. Belis: Fracture strength of glass, engineering testing methods and estimation of characteristic values. In: COST Action TU0905, Mid-Term Conference on Structural Glass, Proceedings, ed. by J. Belis, C. Louter, D. Mocibob (Taylor Francis, London 2013) pp. 223–234
R. Ballarini, G. Pisano, G. Royer-Carfagni: New calibration of partial material factors for the structural design of float glass. Comparison of bounded and unbounded statistics for glass strength, Constr. Build. Mater. 121, 69–80 (2016)
R. Ballarini, G. Pisano, G. Royer-Carfagni: The lower bound for glass strength and its interpretation with generalized Weibull statistics for structural applications, ASCE J. Eng. Mech. 142, 04016100 (2016)
J. Pelfrene, J. Kuntsche, S. van Dam, W. van Paepegem, J. Schneider: Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations, Int. J. Impact Eng. 88, 61–71 (2016)
J. Schneider, D. Bohmann: Glasscheiben unter Stoßbelastung – Experimentelle und theoretische Untersuchungen für absturzsichernde Verglasungen bei weichem Stoß, Bauingenieur 77(2), 581–592 (2002)
M. Vandebroek: Thermal Fracture of Glass, Ph.D. Thesis (Ghent Univ., Ghent 2014)
D.C. Smith: Glazing for injury alleviation under blast loading – United Kingdom practice. In: Proc. Glass Process. Days (2001) pp. 335–340
H.S. Norville, N. Harvill, E.J. Conrath, S. Shariat, S. Mallonee: Glass-related injuries in Oklahoma City bombing, J. Perf. Const. Facil. 13(2), 50–56 (1999)
H.S. Norville: Closure to “Glass-Related Injuries in Oklahoma City Bombing”, J. Perform. Const. Facil. 14(4), 167 (2000)
M. Roth: Zur Berechnung von Bauteilen in hybrider Bauweise unter ballistischer Beanspruchung, Ph.D. Thesis (TU Darmstadt, Darmstadt 2017)
D. Callewaert: Stiffness of Glass/Ionomer Laminates in Structural Applications, Ph.D. Thesis (Ghent Univ., Ghent 2011), https://biblio.ugent.be/publication/1968876
S.P. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells (McGraw-Hill, New York 1959)
S.P. Timoshenko, J.M. Gere: Theory of Elastic Stability (McGraw-Hill, New York 1961)
M. Haldimann, A. Luibleand, M. Overend: Structural Use of Glass, SED 10, IABSE-AIPC-IVBH (International Association of Structural Engineering, Zurich 2008)
J. Blaauwendraad: Buckling of laminated glass columns, Heron 52(12), 147–164 (2007)
C. Amadio, C. Bedon: Buckling of laminated glass elements in compression, J. Struct. Eng. 137(8), 803–810 (2011)
J. Belis, C. Bedon, C. Louter, C. Amadio, R. van Impe: Experimental and analytical assessment of lateral torsional buckling of laminated glass beams, Eng. Struct. 51, 295–305 (2013)
C. Bedon, J. Belis, A. Luible: Assessment of existing analytical models for the lateral torsional buckling analysis of PVB and SG laminated glass beams via viscoelastic simulations and experiments, Eng. Struct. 60, 52–67 (2014)
A. Luible: Stabilität von Tragelementen aus Glas, Ph.D. Thesis (École Polytechnique Fédérale de Lausanne, Lausanne 2004)
L. Galuppi, G. Manara: Practical expressions for the design of laminated glass, Compos. Part B: Eng. 45(1), 1677–1688 (2013)
E.J. Barbero: A 3-D finite element for laminated composites with 2-D kinematic constraints, Comput. Struct. 45(2), 263–271 (1992)
J. Dispersyn: Practical Expressions for the Design of Laminated Glass, Dissertation (Ghent Univ., Ghent 2016)
J.H. Nielsen: Tempered Glass: Bolted Connections and Related Problems, Ph.D. Thesis, BYG-Rapport 1b. R-204 (Technical Univ. of Denmark, Lyngby 2009)
J. Belis, D. D'haese, D. Sonck: Investigation of a friction-grip connection in laminated glass, Proc. Inst. Civ. Eng.-Struct. Build. 169(6), 432–441 (2016)
The Institution of Structural Engineers: Structural Use of Glass in Buildings, 2nd edn. (IStructe, London 2014)
B. Weller, M. Kothe, F. Nicklisch, T. Schadow, S. Tasche, I. Vogt, J. Wünsch: Kleben im konstruktiven Glasbau. In: Stahlbau-Kalender 2011 (Ernst, Berlin 2011) pp. 585–646
L. Blandini: Structural Use of Adhesives in Glass Shells, Ph.D. Thesis (Univ. Stuttgart, Stuttgart 2005)
M. Santarsiero, C. Louter, A. Nussbaumer: Laminated connections for structural glass applications under shear loading at different temperatures and strain rates, Constr. Build. Mater. 128, 214–237 (2016)
M. Drass, V.A. Kolupaev, J. Schneider, S. Kolling: On cavitation in transparent structural silicone adhesive: TSSA, Glass Struct. Eng. 3(3), 237–256 (2018)
M. Santarsiero, C. Louter, A. Nussbaumer: Laminated connections under tensile load at different temperatures and strain rates, Int. J. Adhesion Adhesives 79, 23–49 (2017)
M. Santarsiero, C. Louter, A. Nussbaumer: Laminated connections for structural glass components: A full-scale experimental study, Glass Struct. Eng. 2, 79 (2017)
C. Louter, J. Belis, F.A. Veer, J.-P. Lebet: Structural response of SG-laminated reinforced glass beams; experimental investigations on the effects of glass type, reinforcement percentage and beam size, Eng. Struct. 36, 292–301 (2012)
K. Martens, R. Caspeele, J. Belis: Load-carrying behaviour of interrupted statically indeterminate reinforced laminated glass beams, Glass Struct. Eng. 1, 81 (2016)
J. Dispersyn, J. Belis, D. Sonck: New glass design method for adhesive point-fixing applications, Proc. Inst. Civ. Eng.-Struct. Build. 168(7), 479–489 (2015)
J. Dispersyn, J. Belis: Numerical research on stiff adhesive point-fixings between glass and metal under uniaxial load, Glass Struct. Eng. 1, 115 (2016)
J. Dispersyn, S. Hertelé, W. De Waele, J. Belis: Assessment of hyperelastic material models for the application of adhesive point-fixings between glass and metal, Int. J. Adhesion Adhesives 77, 102–117 (2017)
O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu: The Finite Element Method: Its Basis and Fundamentals, 7th edn. (Butterworth-Heinemann, Oxford 2013)
J. Fish, T. Belytschko: A First Course in Finite Elements (Wiley, Hoboken 2007)
R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt: Concepts and Applications of Finite Element Analysis, 4th edn. (Wiley, Hoboken 2001)
J. Blaauwendraad: Plates and FEM – Surprises and Pitfalls, Solid Mechanics and its Applications, Vol. 171 (Springer, Dordrecht 2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Belis, J., Louter, C., Nielsen, J.H., Schneider, J. (2019). Architectural Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-93728-1_52
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93726-7
Online ISBN: 978-3-319-93728-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)