Skip to main content

Architectural Glass

  • Chapter
Springer Handbook of Glass

Abstract

This chapter on architectural glass focuses on the use of glass in buildings and structures. It covers a wide variety of glass applications ranging from its most frequent use in facade glazing systems to advanced applications of glass as a load-bearing material. The latter is a relatively young field of application and evolved from the early 1990s from simple beam applications to today's all-glass structures. An overview of flat glass products that are frequently applied in architecture is provided in Sect. 52.1. This includes a discussion of the related float glass production process, processing technologies, surface treatments, and glass functionalities such as insulation and fire resistant and switchable glazing. In addition to these flat glass products, which are most commonly applied in architecture, Sect. 52.2 discusses cast glass products. Cast glass products such as glass channels and glass blocks provide a different typology and offer a different architectural expression from flat glass products and are as such frequently used in exterior facades and interior separation walls. The application of glass in common facade systems and as a load-bearing material in structures is discussed in Sect. 52.3. This includes a reflection on the related design methodologies and safety concepts that deal with the brittle and, thus, inherently unsafe failure behavior of glass. Section 52.4 describes different typologies for connecting glass components such as glass facade panels or structural glass beams. This includes a discussion of classical mechanical connections and more recent adhesive bonding technologies that provide new opportunities for glass engineering. Section 52.5 discusses numerical modeling procedures that can be used in the design and engineering of glass in the architectural domain. Finally, an outlook for future developments in architectural glass is provided in Sect. 52.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • R. McGrath, A.C. Frost: Glass in Architecture and Decoration (Architectural Press, London 1961)

    Google Scholar 

  • Pilkington website: http://www.pilkington.com/pilkington-information/about+pilkington/education/default.htm (consulted May 2017)

  • EN 572-2: Glass in Building – Basic Soda Lime Silicate Glass Products – Part 2: Float Glass (CEN, Brussels 2004)

    Google Scholar 

  • J. Schneider: Glass strength in the borehole area of annealed float glass and tempered float glass, Int. J. Form. Process. 7(4), 523–541 (2004)

    Article  Google Scholar 

  • Äppert v. Schmertz, Schmertz v. Äppert: Decisions of the Commissioner of Patents and of the United States Courts in Patent and Trade-Mark Cases (Government Printing Office, Washington 1899) 77–81, 524–534

    Google Scholar 

  • K. Kefallinos: Wire Glass: History of Technology and Development, M.Sc. Thesis (Columbia Univ., New York 2013)

    Google Scholar 

  • EN 572-1: Glass in Building – Basic Soda Lime Silicate Glass Products – Part 1: Definitions and General Physical and Mechanical Properties (CEN, Brussels 2016)

    Google Scholar 

  • EN 1748-1-1: Glass in Building – Special basic products – Borosilicate glasses – Part 1-1: Definition and general physical and medical properties (CEN, Brussels 2004)

    Google Scholar 

  • Schott AG: Datasheet, SCHOTT Xensation, Chemical strengthened alumino-silicate glass, accessed May (2018), https://www.schott.com/d/xensation/74eaa741-621e-45e0-a9bb-06927f1bd1c7/schott-xensation-data-sheet-english-22052018.pdf

  • C.E. Inglis: Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Nav. Archit. 55, 219–230 (1913)

    Google Scholar 

  • A.A. Griffith: The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

  • H. Tada, P.C. Paris, G.R. Irwin: The Stress Analysis of Cracks Handbook, 3rd edn. (Wiley-Blackwell, Hoboken 2000)

    Book  Google Scholar 

  • A. Petzold, H. Marusch, B. Schramm: Der Baustoff Glas: Grundlagen, Eigenschaften, Erzeugnisse, Glasbauelemente, Anwendungen, 3rd edn. (Karl Hofmann, Schorndorf 1990)

    Google Scholar 

  • S.M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass, J. Am. Ceram. Soc. 50(8), 407–414 (1967), https://doi.org/10.1111/j.1151-2916.1967.tb15145.x

    Article  CAS  Google Scholar 

  • T.A. Michalske, S.W. Freiman: A molecular mechanism for stress corrosion in vitreous silica, J. Am. Ceram. Soc. 66(4), 284–288 (1983)

    Article  CAS  Google Scholar 

  • EN 1863-1: Glass in Building – Heat Strengthened Soda Lime Silicate Glass - Part 1: Definition and Description (CEN, Brussels 2012)

    Google Scholar 

  • EN 12150-1: Glass in Building – Thermally Toughened Soda Lime Silicate Safety Glass – Part 1: Definition and Description (CEN, Brussels 2015)

    Google Scholar 

  • G.D. Quinn: Fractography of Ceramics and Glasses, NIST Recommended Practice Guide (NIST, Gaithersburg 2016), https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.960-16e2.pdf

  • D.R. Uhlmann, N.J. Kreidl: Glass Science and Technology 5: Elasticity and Strength in Glasses (Academic, Cambridge 1980)

    Google Scholar 

  • J. Hilcken: Zyklische Ermüdung von thermisch entspanntem und thermisch vorgespannten Kalk-Natron-Silikatglas, Mechanik, Werkstoffe und Konstruktion im Bauwesen (Springer Vieweg, Heidelberg 2015)

    Book  Google Scholar 

  • D. Hull: Fractography: Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  • J.H. Nielsen, J.F. Olesen, H. Stang: The fracture process of tempered soda-lime-silica glass, Exp. Mech. 49(6), 855–870 (2009), https://doi.org/10.1007/s11340-008-9200-y

    Article  CAS  Google Scholar 

  • L.H. Adams, E.D. Williamson: The annealing of glass, J. Frankl. Inst. 190, 597–632 (1920)

    Article  CAS  Google Scholar 

  • E.H. Lee, T.G. Rogers, T.C. Woo: Residual stresses in a glass plate cooled symmetrically from both surfaces, J. Am. Ceram. Soc. 48, 480–487 (1965)

    Article  CAS  Google Scholar 

  • O.S. Narayanaswamy: A model of structural relaxation in glass, J. Am. Ceram. Soc. 54, 491–498 (1971)

    Article  CAS  Google Scholar 

  • L. Daudeville, H. Carré: Thermal tempering simulation of glass plates: Inner and edge residual stresses, J. Therm. Stress. 21, 667–689 (1998)

    Article  Google Scholar 

  • W. Laufs, G. Sedlacek: Stress distribution in thermally tempered glass panes near the edges, corners and holes – Part 2 – Distribution of thermal stresses, Glas. Sci. Technol. 72, 42–48 (1999)

    CAS  Google Scholar 

  • J.H. Nielsen, J.F. Olesen, P.N. Poulsen, H. Stang: Finite element implementation of a glass tempering model in three dimensions, Comput. Struct. 88, 963–972 (2010)

    Article  Google Scholar 

  • J.H. Nielsen, J.F. Olesen, P.N. Poulsen, H. Stang: Simulation of residual stresses at holes in tempered glass: A parametric study, Mater. Struct. 43, 947–961 (2010)

    Article  Google Scholar 

  • A. Aronen: Modelling of Deformations and Stresses in Glass Tempering, Ph.D. Thesis (Tampere Univ. of Technology, Tampere 2012)

    Google Scholar 

  • S. Schula: Charakterisierung der Kratzanfälligkeit von Gläsern im Bauwesen – Characterisation of the Scratch Sensitivity of Glasses in Civil Engineering (Springer, Heidelberg 2015)

    Book  Google Scholar 

  • E. Ballantyne: Fracture of toughened glass wall cladding, Technical Report, Vol. 06.1-5 (CSIRO Division of Boulding Research, Melbourne 1961)

    Google Scholar 

  • L. Merker: Zum Verhalten des Nickelsulfids im Glas, Glastech. Ber. 47(6), 116–121 (1974)

    CAS  Google Scholar 

  • M. Swain: Nickel sulphide inclusions in glass: An example of microcracking induced by a volumetric expanding phase change, J. Mater. Sci. 16, 151–158 (1981)

    Article  CAS  Google Scholar 

  • A. Kasper: Nickelsulfid in Glas – Fortschritte der Glastechnik (Verlag der Deutschen Glastechnischen Gesellschaft, Offenbach 2003)

    Google Scholar 

  • J. Schneider, J. Hilcken: Nickel sulfide (NiS)-induced failure of glass: Fracture mechanics model and verification by fracture data. In: Engineered Transparency, International Conference at Glasstec (2010) pp. 125–136

    Google Scholar 

  • J. Schneider, J. Hilcken, A. Aronen, R. Karvinen, J.F. Olesen, J. Nielsen: Stress relaxation in tempered glass caused by heat soak testing, Eng. Struct. 122, 42–49 (2016)

    Article  Google Scholar 

  • J. Schneider, J.K. Kuntsche, S. Schula, F. Schneider, J.-D. Wörner: Glasbau – Grundlagen, Berechnung, Konstruktion (Springer, Heidelberg 2016)

    Google Scholar 

  • M. Bergers, K. Natividad, S.M. Morse, H.S. Norville: Full scale tests of heat strengthened glass with ceramic frit, Glass Struct. Eng. 1, 261 (2016)

    Article  Google Scholar 

  • I. Maniatis, M. Elstner: Investigations on the mechanical strength of enamelled glass, Glass Struct. Eng. 1, 277 (2016)

    Article  Google Scholar 

  • EN ISO 12543: Laminated Glass and Laminated Safety Glass – Part 1: Definitions and Description of Component Parts (ISO 2011)

    Google Scholar 

  • M. Kothe, B. Weller: Influence of environmental stresses to the ageing behaviour of interlayer. In: Challenging Glass 4 & COST Action TU0905 Final Conference, ed. by C. Louter, F. Bos, J. Belis, J.-P. Lebet (Taylor Francis, London 2014) pp. 439–446

    Chapter  Google Scholar 

  • J. Belis, P. Raes, G. Savinau: On the causes of optical defects in laminated glass. In: Proc. Glass Perf. Days, Tampere (2017) p. 401

    Google Scholar 

  • EN 356: Glass in Building – Security glazing – Testing and Classification of Resistance Against Manual Attack (CEN, Brussels 2000)

    Google Scholar 

  • Saint Gobain Glass: Memento Glashandbuch (Saint Gobain Glass, Stolberg 2005)

    Google Scholar 

  • Sicurtec: sicurLITE: Highly Resistant Glass, produkt data sheet (Sicurtec, Mondsee 2011)

    Google Scholar 

  • EN 1063: Glass in Building – Security Glazing – Testing and Classification of Resistance Against Bullet Attack (CEN, Brussels 2000)

    Google Scholar 

  • EN 13541: Glass in Building – Security Glazing – Testing and Classification of Resistance Against Explosions Pressure (CEN, Brussels 2012)

    Google Scholar 

  • C. Schittich, G. Staib, D. Balkow, M. Schuler, W. Sobek: Glass Construction Manual (Birkhäuser, Basel, Berlin 2012)

    Google Scholar 

  • M.D. Knorr, J. Wieser, G. Geertz, S. Buddenberg, M. Oechsner, W. Wittwer: Gas loss of insulating glass units under load: Internal pressure controlled permeation test, Glass Struct. Eng. 1(1), 289–299 (2016)

    Article  Google Scholar 

  • S. Buddenberg, P. Hof, M. Oechsner: Climate loads in insulating glass units: Comparison of theory and experimental results, Glass Struct. Eng. 1(1), 301–313 (2016)

    Article  Google Scholar 

  • F. Feldmeier: Zur Berücksichtigung der Klimabelastung bei der Bemessung von Isolierglas bei Überkopfverglasungen, Stahlbau 65(8), 285–290 (1996)

    Google Scholar 

  • F. Feldmeier: Belastung von Isoliergläsern durch Klimaschwankungen, Fenster Fassade 2, 41–52 (1984)

    Google Scholar 

  • F. Feldmeier: Klimabelastung und Lastverteilung bei Mehrscheiben-Isolierglas, Stahlbau 75(6), 467–478 (2006)

    Article  Google Scholar 

  • F. Feldmeier: Bemessung von Dreifach-Isolierglas, Stahlbau 80, 75–80 (2011)

    Article  Google Scholar 

  • S.M. Morse, H.S. Norville: Comparison of methods to determine load sharing of insulating glass units for environmental loads, Glass Struct. Eng. 1(1), 315–329 (2016)

    Article  Google Scholar 

  • F. Zoller: Hohle Glasscheibe (Hollow pane of glass), German Patent 387655 (1924)

    Google Scholar 

  • R. Collins, T. Simko: Current status of the science and technology of vacuum glazing, Solar Energy 62(3), 189–213 (1998)

    Article  Google Scholar 

  • J. Belis, B. Verhegghe, M. De Beule, R. van Impe: Evaluation of glass domes using PyFormex. In: Shell and Spatial Structures: Structural Architecture – Towards the Future Looking to the Past, Proc. of IASS Symposium, Venice (2007)

    Google Scholar 

  • J. Bijster, C. Noteboom, M. Eekhout: Glass Entrance Van Gogh Museum Amsterdam, Glass Struct. Eng. 1, 205 (2016)

    Article  Google Scholar 

  • A. Lyons: Materials for Architects and Builders (Taylor Francis, London 2012)

    Book  Google Scholar 

  • A. Brykov, S. Petersburg: The use of colloidal silica solutions in the perspective technologies of fire-resistant glass and multi-layer decorative panels. In: Proc. Glass Process. Days, Tampere (2005)

    Google Scholar 

  • A. Brykov: Aqueous jellies in the K20-Si02-H20 system and their use in technology of fire resistant glass. In: Proc. Glass Process. Days, Tampere (2007) pp. 350–351

    Google Scholar 

  • V. Villari: A new generation of fire resistant glazing. In: Proc. Glass Process. Days, Tampere (2007) pp. 344–345

    Google Scholar 

  • Y. Misawa, M. Hirota, S. Matsunobu: Post-applied film to improve the fire resistance of existing glass facades. In: Proc. Glass Perform. Days, Tampere (2011) pp. 277–280

    Google Scholar 

  • Y. Misawa, M. Hirota, T. Ohta, S. Matsunobu: Post-applied film to improve the fire resistance of existing exterior windows. In: Proc. Glass Performa. Days, Tampere (2013) pp. 260–264

    Google Scholar 

  • P. Nitz, A. Wagner: Schaltbare und regelbare Verglasungen. In: Bine Informationsdienst, Themeninfo I/02, ed. by J. Lang (Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, Eggenstein-Leopoldshafen 2002)

    Google Scholar 

  • H. Wittkopf, M. Dittmar: Variable Sonnenschutzgläser – von den Grundlagen zur Praxis. In: Glasbau 2012, ed. by B. Weller, S. Tasche (Wilhelm Ernst, Berlin 2012) pp. 279–290

    Chapter  Google Scholar 

  • F. Oikonomopoulou, T. Bristogianni, F.A. Veer, R. Nijsse: The construction of the Crystal Houses façade: Challenges and innovations, Glass Struct. Eng. 3(1), 87–108 (2018)

    Article  Google Scholar 

  • C. Paech, K. Guppert: Innovative Glass Joints – the 11 March Memorial in Madrid. Challenging Glass Conference (IOS, Amsterdam 2008)

    Google Scholar 

  • CWCT: Standard for Systemized Building Envelopes, Part 1 – Scope, Terminology, Testing and Classification (Centre for Window and Cladding Technology, Univ. of Bath, Bath 2005)

    Google Scholar 

  • M. Patterson: Structural Glass Facades and Enclosures (Wiley, Hoboken 2011)

    Google Scholar 

  • EOTA: ETAG 002 – Guideline for European Technical approval for Structural Sealant Glazing systems (SSGS) (European Organisation for Technical Assessment, Brussels 2001)

    Google Scholar 

  • A. Hagl: Development and test logics for structural silicone bonding design and sizing, Glass Struct. Eng. 1, 131 (2016)

    Article  Google Scholar 

  • R. Ringli, T. Vogel: Load-bearing behavior of spliced glass beams under bending action, Glass Struct. Eng. 1, 61 (2016)

    Article  Google Scholar 

  • F. Oikonomopoulou, E.A.M. van den Broek, T. Bristogianni, F.A. Veer, R. Nijsse: Design and experimental testing of the bundled glass column, Glass Struct. Eng. 2(2), 183–200 (2017)

    Article  Google Scholar 

  • A. Snijder, R. Nijsse, C. Louter: Building and Testing Lenticular Truss Bridge with Glass-Bundle Diagonals and Cast Glass Connections. In: Challenging Glass Conference Proceedings, Vol. 6 (2018) pp. 647–660

    Google Scholar 

  • prCEN-TS Structural Glass – Design and Construction Rules – Part 1: Basis of Design and Materials (CEN, Delft 2018)

    Google Scholar 

  • EN 1990: Eurocode – Basis of Structural Design (CEN, Brussels 2010)

    Google Scholar 

  • S. Schula, J. Schneider, M. Vandebroek, J. Belis: Fracture strength of glass, engineering testing methods and estimation of characteristic values. In: COST Action TU0905, Mid-Term Conference on Structural Glass, Proceedings, ed. by J. Belis, C. Louter, D. Mocibob (Taylor Francis, London 2013) pp. 223–234

    Chapter  Google Scholar 

  • R. Ballarini, G. Pisano, G. Royer-Carfagni: New calibration of partial material factors for the structural design of float glass. Comparison of bounded and unbounded statistics for glass strength, Constr. Build. Mater. 121, 69–80 (2016)

    Article  Google Scholar 

  • R. Ballarini, G. Pisano, G. Royer-Carfagni: The lower bound for glass strength and its interpretation with generalized Weibull statistics for structural applications, ASCE J. Eng. Mech. 142, 04016100 (2016)

    Article  Google Scholar 

  • J. Pelfrene, J. Kuntsche, S. van Dam, W. van Paepegem, J. Schneider: Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations, Int. J. Impact Eng. 88, 61–71 (2016)

    Article  Google Scholar 

  • J. Schneider, D. Bohmann: Glasscheiben unter Stoßbelastung – Experimentelle und theoretische Untersuchungen für absturzsichernde Verglasungen bei weichem Stoß, Bauingenieur 77(2), 581–592 (2002)

    Google Scholar 

  • M. Vandebroek: Thermal Fracture of Glass, Ph.D. Thesis (Ghent Univ., Ghent 2014)

    Google Scholar 

  • D.C. Smith: Glazing for injury alleviation under blast loading – United Kingdom practice. In: Proc. Glass Process. Days (2001) pp. 335–340

    Google Scholar 

  • H.S. Norville, N. Harvill, E.J. Conrath, S. Shariat, S. Mallonee: Glass-related injuries in Oklahoma City bombing, J. Perf. Const. Facil. 13(2), 50–56 (1999)

    Article  Google Scholar 

  • H.S. Norville: Closure to “Glass-Related Injuries in Oklahoma City Bombing”, J. Perform. Const. Facil. 14(4), 167 (2000)

    Article  Google Scholar 

  • M. Roth: Zur Berechnung von Bauteilen in hybrider Bauweise unter ballistischer Beanspruchung, Ph.D. Thesis (TU Darmstadt, Darmstadt 2017)

    Book  Google Scholar 

  • D. Callewaert: Stiffness of Glass/Ionomer Laminates in Structural Applications, Ph.D. Thesis (Ghent Univ., Ghent 2011), https://biblio.ugent.be/publication/1968876

    Google Scholar 

  • S.P. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells (McGraw-Hill, New York 1959)

    Google Scholar 

  • S.P. Timoshenko, J.M. Gere: Theory of Elastic Stability (McGraw-Hill, New York 1961)

    Google Scholar 

  • M. Haldimann, A. Luibleand, M. Overend: Structural Use of Glass, SED 10, IABSE-AIPC-IVBH (International Association of Structural Engineering, Zurich 2008)

    Google Scholar 

  • J. Blaauwendraad: Buckling of laminated glass columns, Heron 52(12), 147–164 (2007)

    Google Scholar 

  • C. Amadio, C. Bedon: Buckling of laminated glass elements in compression, J. Struct. Eng. 137(8), 803–810 (2011)

    Article  Google Scholar 

  • J. Belis, C. Bedon, C. Louter, C. Amadio, R. van Impe: Experimental and analytical assessment of lateral torsional buckling of laminated glass beams, Eng. Struct. 51, 295–305 (2013)

    Article  Google Scholar 

  • C. Bedon, J. Belis, A. Luible: Assessment of existing analytical models for the lateral torsional buckling analysis of PVB and SG laminated glass beams via viscoelastic simulations and experiments, Eng. Struct. 60, 52–67 (2014)

    Article  Google Scholar 

  • A. Luible: Stabilität von Tragelementen aus Glas, Ph.D. Thesis (École Polytechnique Fédérale de Lausanne, Lausanne 2004)

    Google Scholar 

  • L. Galuppi, G. Manara: Practical expressions for the design of laminated glass, Compos. Part B: Eng. 45(1), 1677–1688 (2013)

    Article  CAS  Google Scholar 

  • E.J. Barbero: A 3-D finite element for laminated composites with 2-D kinematic constraints, Comput. Struct. 45(2), 263–271 (1992)

    Article  Google Scholar 

  • J. Dispersyn: Practical Expressions for the Design of Laminated Glass, Dissertation (Ghent Univ., Ghent 2016)

    Google Scholar 

  • J.H. Nielsen: Tempered Glass: Bolted Connections and Related Problems, Ph.D. Thesis, BYG-Rapport 1b. R-204 (Technical Univ. of Denmark, Lyngby 2009)

    Google Scholar 

  • J. Belis, D. D'haese, D. Sonck: Investigation of a friction-grip connection in laminated glass, Proc. Inst. Civ. Eng.-Struct. Build. 169(6), 432–441 (2016)

    Article  Google Scholar 

  • The Institution of Structural Engineers: Structural Use of Glass in Buildings, 2nd edn. (IStructe, London 2014)

    Google Scholar 

  • B. Weller, M. Kothe, F. Nicklisch, T. Schadow, S. Tasche, I. Vogt, J. Wünsch: Kleben im konstruktiven Glasbau. In: Stahlbau-Kalender 2011 (Ernst, Berlin 2011) pp. 585–646

    Google Scholar 

  • L. Blandini: Structural Use of Adhesives in Glass Shells, Ph.D. Thesis (Univ. Stuttgart, Stuttgart 2005)

    Google Scholar 

  • M. Santarsiero, C. Louter, A. Nussbaumer: Laminated connections for structural glass applications under shear loading at different temperatures and strain rates, Constr. Build. Mater. 128, 214–237 (2016)

    Article  Google Scholar 

  • M. Drass, V.A. Kolupaev, J. Schneider, S. Kolling: On cavitation in transparent structural silicone adhesive: TSSA, Glass Struct. Eng. 3(3), 237–256 (2018)

    Article  Google Scholar 

  • M. Santarsiero, C. Louter, A. Nussbaumer: Laminated connections under tensile load at different temperatures and strain rates, Int. J. Adhesion Adhesives 79, 23–49 (2017)

    Article  CAS  Google Scholar 

  • M. Santarsiero, C. Louter, A. Nussbaumer: Laminated connections for structural glass components: A full-scale experimental study, Glass Struct. Eng. 2, 79 (2017)

    Article  Google Scholar 

  • C. Louter, J. Belis, F.A. Veer, J.-P. Lebet: Structural response of SG-laminated reinforced glass beams; experimental investigations on the effects of glass type, reinforcement percentage and beam size, Eng. Struct. 36, 292–301 (2012)

    Article  Google Scholar 

  • K. Martens, R. Caspeele, J. Belis: Load-carrying behaviour of interrupted statically indeterminate reinforced laminated glass beams, Glass Struct. Eng. 1, 81 (2016)

    Article  Google Scholar 

  • J. Dispersyn, J. Belis, D. Sonck: New glass design method for adhesive point-fixing applications, Proc. Inst. Civ. Eng.-Struct. Build. 168(7), 479–489 (2015)

    Article  Google Scholar 

  • J. Dispersyn, J. Belis: Numerical research on stiff adhesive point-fixings between glass and metal under uniaxial load, Glass Struct. Eng. 1, 115 (2016)

    Article  Google Scholar 

  • J. Dispersyn, S. Hertelé, W. De Waele, J. Belis: Assessment of hyperelastic material models for the application of adhesive point-fixings between glass and metal, Int. J. Adhesion Adhesives 77, 102–117 (2017)

    Article  CAS  Google Scholar 

  • O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu: The Finite Element Method: Its Basis and Fundamentals, 7th edn. (Butterworth-Heinemann, Oxford 2013)

    Google Scholar 

  • J. Fish, T. Belytschko: A First Course in Finite Elements (Wiley, Hoboken 2007)

    Book  Google Scholar 

  • R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt: Concepts and Applications of Finite Element Analysis, 4th edn. (Wiley, Hoboken 2001)

    Google Scholar 

  • J. Blaauwendraad: Plates and FEM – Surprises and Pitfalls, Solid Mechanics and its Applications, Vol. 171 (Springer, Dordrecht 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Belis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Belis, J., Louter, C., Nielsen, J.H., Schneider, J. (2019). Architectural Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_52

Download citation

Publish with us

Policies and ethics