Skip to main content

Batch Chemistry and Reactions

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

  • 7404 Accesses

Abstract

In industrial glass production, a batch composed of a mix of raw materials is introduced in the furnace at high temperatures, to be converted into a glass melt, which will then be shaped into the desired article. The batch-to-melt conversion is a critical process, involving a sequence of reactions (dehydration, solid-state reactions, formation of primary melt phases, dissolution of sand grains), the nature and rate of which depend on both thermodynamics and kinetics. Heat transfers to the batch are of major importance, as the rate of batch-to-melt conversion has a direct impact on the energy required for melting the glass, and therefore on the production costs. After the batch-to-melt conversion, the melt will contain a large amount of bubbles and dissolved gases, and a proper fining is required to obtain a product with good quality.

In this chapter, the different reactions taking place during the batch-to-melt conversion and the fining of the melt are described. Specific attention is given to the heat transfer mechanisms, kinetics, and the silica (sand) grain dissolution mechanisms. The consequences of batch-to-melt and fining reactions in an industrial furnace (foaming, refractory corrosion) are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D. Dollimore, J.G. Dunn, Y.F. Lee, B.M. Penrod: The decrepitation of dolomite and limestone, Thermochim. Acta 237(1), 125–131 (1994)

    Article  CAS  Google Scholar 

  • O.S. Verheijen, A. Habraken, A. Lankhorst, H. Gramberg, S. Lessmann, M. van Kersbergen: Detailed modeling of glass furnace regenerators. In: 12th ESG Conf., Parma (2014)

    Google Scholar 

  • C. Kröger, H. Eligehausen: Über das Wärmeleitvermögen des einschmelzenden Glasgemenges, Glastech. Ber. 32(9), 362–373 (1959)

    Google Scholar 

  • M. Daniels: Einschmelzverhalten von Glasgemengen, Glastechnische Berichte 46(3), 40–46 (1973)

    CAS  Google Scholar 

  • P. Costa: Untersuchung des Einschmelzverhaltens von pelletiertem Gemenge zur Glasherstellung, Glastech. Ber. 50(1), 10–18 (1977)

    Google Scholar 

  • W. Trier, K.L. Loewenstein: Glass Furnaces: Design, Construction and Operation (Society of Glass Technology, Sheffield 1987)

    Google Scholar 

  • A.J. Faber, R.G.C. Beerkens, H. de Waal: Thermal behaviour of glass batch on batch heating, Glastech. Ber. 65(7), 177–185 (1992)

    CAS  Google Scholar 

  • R. Conradt, P. Suwannathada, P. Pimkhaokham: Local temperature distribution and primary melt formation in a melting batch heap, Glastech. Ber. 67(5), 103–113 (1994)

    CAS  Google Scholar 

  • O.S. Verheijen: Thermal and Chemical Behavior of Glass Forming Batches, Ph.D. Thesis (Technical Univ. Eindhoven, Eindhoven 2003)

    Google Scholar 

  • C. Kröger: Theoretischer Wärmebedarf der Glasschmelzprozesse, Glastech. Ber. 26(7), 202–214 (1953)

    Google Scholar 

  • R. Conradt, P. Pimkhaokham: An easy-to-apply method to estimate the heat demand for melting technical silicate glasses, Glastech. Ber. 63, 134–143 (1990)

    Google Scholar 

  • C. Madivate, F. Muller, W. Wilsmann: Thermochemistry of the glass melting process—Energy requirement in melting soda-lime-silica glasses from cullet-containing batches, Glastech. Ber. 69(6), 167–178 (1996)

    CAS  Google Scholar 

  • C. Kröger: Gemengereaktionen und Glasschmelze, Glastech. Ber. 25(10), 307–324 (1952)

    Google Scholar 

  • F.W. Wilburn, S.A. Metcalfe, R.S. Warburton: Differential thermal analysis, differential thermogravimetric analysis, and high temperature microscopy of reactions between the major components of a sheet glass batch, Glass Technol. 6(4), 107–114 (1965)

    CAS  Google Scholar 

  • K. Kautz, G. Stromburg: Untersuchungen der Vorgänge beim Einschmelzen von Glasgemengen im Gadrientofen, Glastech. Ber. 42(7), 309–317 (1969)

    CAS  Google Scholar 

  • P. Hrma: Reaction between sodium carbonate and silica at 874 °C < T < 1022 °C, J. Am. Ceram. Soc. 68(6), 337–341 (1985)

    Article  CAS  Google Scholar 

  • C.A. Sheckler, D.R. Dinger: Effect of particle size distribution on the melting of soda-lime-silica glass, J. Am. Ceram. Soc. 73(1), 24–30 (1990)

    Article  CAS  Google Scholar 

  • K.S. Hong, R.E. Speyer: Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: I, One- and two-component systems, J. Am. Ceram. Soc. 76(3), 598–604 (1993)

    Article  CAS  Google Scholar 

  • K.S. Hong, S.W. Lee, R.E. Speyer: Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: II, Multicomponent systems, J. Am. Ceram. Soc. 76(3), 605–608 (1993)

    Article  CAS  Google Scholar 

  • L. Stoch, S. Kraishan: Interface phenomena accompanying the early stages of glass batch reactions: A model study, Glastech. Ber. 70(10), 298–305 (1997)

    CAS  Google Scholar 

  • E. Gouillart, M.J. Toplis, J. Grynberg, M.-H. Chopinet, E. Sondergard, L. Salvo, M. Suéry, M. Di Michiel, G. Varoquaux: In situ synchrotron microtomography reveals multiple reaction pathways during soda-lime glass synthesis, J. Am. Ceram. Soc. 95(5), 1504–1507 (2012)

    Article  CAS  Google Scholar 

  • J. Grynberg, E. Gouillart, M.-H. Chopinet, M.J. Toplis: Importance of the atmosphere on the mechanisms and kinetics of reactions between silica and sodium carbonate, Int. J. Appl. Glass Sci. 6(4), 428–437 (2015)

    Article  CAS  Google Scholar 

  • P.K. Gallagher, D.W. Johnson: The effects of sample size and heating rate on the kinetics of the thermal decomposition of CaCO3, Thermochem. Acta 6, 67–83 (1973)

    Article  CAS  Google Scholar 

  • P.K. Gallagher, D.W. Johnson: Kinetics of the thermal decomposition of CaCO3 in CO2 and some observations on the kinetic compensation effect, Thermochem. Acta 14, 255–261 (1976)

    Article  CAS  Google Scholar 

  • J.M. Criado, A. Ortega: A study of the influence of particle size on the thermal decomposition of CaCO3 by means of constant rate thermal analysis, Thermochem. Acta 195, 163–167 (1992)

    Article  CAS  Google Scholar 

  • M. Olszak-Humienik, J. Mozejko: Kinetics of thermal decomposition of dolomite, J. Thermal Anal. Calorim. 56, 829–833 (1999)

    Article  CAS  Google Scholar 

  • B.V. L'vov: Mechanism and kinetics of thermal decomposition of carbonates, Thermochem. Acta 386, 1–16 (2002)

    Article  CAS  Google Scholar 

  • D.W. Ready, A.R. Cooper: Molecular diffusion with a strong moving boundary and spherical symmetry, Chem. Eng. Sci. 21, 917–922 (1966)

    Article  Google Scholar 

  • M. Muhlbauer, L. Nemec: Dissolution of glass sand, Am. Ceram. Soc. Bull. 64(11), 1471–1475 (1985)

    Google Scholar 

  • L. Bodalbhai, P. Hrma: The dissolution of silica grains in isothermally heated batches of sodium carbonate and silica sand, Glass Technol. 27(2), 72–78 (1986)

    CAS  Google Scholar 

  • R.G.C. Beerkens, H.P.H. Muijsenberg, T. van der Heijden: Modelling of sand grain dissolution in industrial glass melting tanks, Glastech. Ber. Glass Sci. Technol. 67, 179–188 (1994)

    CAS  Google Scholar 

  • P. Hrma, J. Marcial: Dissolution retardation of solid silica during glass-batch melting, J. Non-Cryst. Solids 357, 2954–2959 (2011)

    Article  CAS  Google Scholar 

  • P. Hrma, J. Marcial, K.J. Swearingen, S.H. Henager, M.J. Schweiger, N.E. TeGrotenhuis: Conversion of batch to molten glass, II: Dissolution of quartz particles, J. Non-Cryst. Solids 357(3), 820–828 (2011)

    Article  CAS  Google Scholar 

  • A. Ungan, R. Viskanta: Melting behavior of continuously charged loose batch blankets in glass melting furnaces, Glastechnische Berichte 59(10), 279–291 (1986)

    CAS  Google Scholar 

  • NCNG: Glass Technology Course Textbook (2012)

    Google Scholar 

  • E.M. Levin, C.R. Robbins, H.F. McMurdie: Phase Diagrams for Ceramics (The American Ceramic Society, Westesville 1964)

    Google Scholar 

  • FactSage: Centre for Research in Computational Thermochemistry, Ecole Polytechnique, http://gtt-technologies.de/factsage (Montreal, Quebec 1976–2018)

  • B.A. Shakhmatkin, N.M. Vedishcheva, C.A. Wright: Thermodynamic properties: A reliable instrument for predicting glass properties, Proc. Int. Congr. Glass, Edinburgh 1, 52–60 (2001)

    Google Scholar 

  • R.G.C. Beerkens: Modeling of the melting process in industrial glass furnaces. In: Mathematical Simulation in Glass Technology, ed. by D. Krause, H. Loch (Springer, Berlin Heidelberg 2002) pp. 17–72

    Chapter  Google Scholar 

  • R. Beerkens: Sulphur chemistry and sulphate fining and foaming of glass melts, Glass Technol. 48(1), 41–52 (2007)

    CAS  Google Scholar 

  • A.J. Faber, O.S. Verheijen, J.M. Simon: Redox and foaming behavior of e-glass melts. In: Advances in Fusion Processing of Glass III, ed. by J.L. Vorner, T.P. Seward III, H.A. Schaeffes (American Ceramic Society, Westerville 2004) pp. 71–82

    Google Scholar 

  • P. Laimbock: Foaming of Glass Melts, Ph.D. Thesis (Technical Univ. Eindhoven, Eindhoven 1998)

    Google Scholar 

  • J.E. Shelby: Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, London 2005)

    Google Scholar 

  • B.M. Scalet, M.G. Munoz, A.Q. Sissa, S. Roudier, L.D. Sancho: Best Available Techniques (BAT) Reference Document for the Manufacture of Glass, JRC Reference Report (European Commission, Brussels 2013)

    Google Scholar 

  • R. Falcone, S. Ceola, A. Daneo, S. Maurina: The role of sulfur compounds in coloring and melting kinetics of industrial glass, Rev. Mineral Geochem. 73(1), 113–141 (2011)

    Article  CAS  Google Scholar 

  • M. Hujova, M. Vernerova: Influence of fining agents on glass melting: A review, Part 1, Ceramics-Silikaty 61(2), 119–126 (2017)

    Article  CAS  Google Scholar 

  • R.G.C. Beerkens: Sulfate decomposition and sodium oxide activity in soda–lime–silica glass melts, J. Am. Ceram. Soc. 86(11), 1893–1899 (2003)

    Article  CAS  Google Scholar 

  • R.G.C. Beerkens, K. Kahl: Chemistry of sulphur in soda-lime-silica glass melts, Phys. Chem. Glass. 43(4), 189–198 (2002)

    CAS  Google Scholar 

  • M. Rongen, M. Hubert, P. Marson, S. Lessmann, O. Verheijen: Laboratory facilities for simulation of essential process steps in industrial glass furnaces. In: 75th Conf. Glass Probl. (Wiley, Hoboken 2015) pp. 223–234

    Google Scholar 

  • P.C. Ross, D.D. Myers: Amber glass—40 years of lessons learned. In: The 66th Conf. Glass Probl. (Wiley, Hoboken 2008) pp. 129–139

    Google Scholar 

  • D. Kopsel: Solubility and vaporization of halogenides, Glastech. Ber. Glass Sci. Technol. 73(C2), 43–49 (2000)

    Google Scholar 

  • P. Hartmann: EU regulations threaten availability of raw materials for optics, https://spie.org/membership/spie-professional-magazine/spie-professional-archives-and-special-content/2014_april_archive_spie_pro/euro-regulations?SSO=1 (2014)

  • K.D. Kim, H.K. Kim: Redox behavior of Sn and S in alkaline earth borosilicate glass melts with 1 mol% Na2O, J. Korean Ceram. Soc. 46(3), 271–274 (2009)

    Article  CAS  Google Scholar 

  • M.J.M. Comte: Aluminosilicate glasses with improved fining behaviour, Patent US 8722554 B2 (2014)

    Google Scholar 

  • V.V. Vargin, G.A. Osadchaya: Cerium dioxide as a fining agent and decolorizer for glass, Glass Ceram. 17(2), 78–82 (1960)

    Article  Google Scholar 

  • K.D. Kim, H.K. Kim, J.H. Kim: Behavior of oxygen equilibrium pressure in CRT glass melts doped with Sb and Ce ions from the viewpoint of fining, J. Korean Ceram. Soc. 44(8), 419–423 (2007)

    Article  CAS  Google Scholar 

  • M. Hubert, A.J. Faber, H. Sesigur, F. Akmaz, S.R. Kahl, E. Alejandro, T. Maehara: Impact of redox in industrial glass melting and importance of redox control. In: 77th Conf. Glass Probl. (Wiley, Hoboken 2017) pp. 113–128

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Hubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Verheijen, O.S., Hubert, M. (2019). Batch Chemistry and Reactions. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_35

Download citation

Publish with us

Policies and ethics