Skip to main content

Terahertz Time-Domain Spectroscopy of Glasses

  • Chapter
Book cover Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

Terahertz-time domain spectroscopy () uses the real and imaginary parts of the dielectric and optical constants for glass characterization over a wide frequency range in the electromagnetic spectrum. This chapter provides an overview and analysis of various THz spectrometers and typical data sets over \(0.1{-}10\,{\mathrm{THz}}\). Phonon modes in THz region and Lunkenheimer–Loidl plots for disordered materials along with density-functional based tight-binding () modeling results for \(\mathrm{As_{2}S_{3}}\) are described. THz optical and dielectric properties of selected model glass systems, e. g., silica, alkali borate, and silicates, based on works reported in the literature, are discussed. Mixed-alkali effects and thermal stability in terms of THz properties of simple tellurite glass composition, \(\mathrm{80TeO_{2}}\)-\(\mathrm{10WO_{3}}\)-(\(10{-}x\))\(\mathrm{Li_{2}O}\)-\(\mathrm{\mathit{x}Na_{2}O}\) with \(x=\) 0, 2, 4, and 6, are reported. Chalcogenide (As-S) glasses show that the refractive indices in THz, infrared, and visible frequencies decrease with arsenic composition up to a point of optimal constrained structure with average coordination number, \(\langle r\rangle\), beyond which the refractive index increases. Our results in hydroxyapatite (\(\mathrm{Ca_{10}(PO_{4})_{6}}\)\(\cdot\)\(\mathrm{(OH)_{2}}\); HA)-glass (0.05CaO-\(\mathrm{0.12TiO_{2}}\)-\(\mathrm{0.17Na_{2}O}\)-0.28ZnO-\(\mathrm{0.38SiO_{2}}\)) composites demonstrate that the THz-TDS can be a promising non-destructive tool for evaluating these composites and tracking their degradation in simulated body fluids in biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E.R. Mueller: Terahertz radiation: Applications and sources, Ind. Phys. 9(4), 27–30 (2003)

    Google Scholar 

  • P.H. Siegel: Terahertz technology, IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  Google Scholar 

  • X.-C. Zhang: Generation and detection of THz EM pulse from dielectrics with femtosecond optics. In: Ultra Fast Phenomena, CCAST-WL Series, Vol. 38, ed. by K. Shum, Y.J. Ding, X.-C. Zhang (Gordon and Breach Scientific, Philadelphia 1994) pp. 89–115

    Google Scholar 

  • X.-C. Zhang: Generation and detection of terahertz electromagnetic pulsed radiation from semiconductor crystals with femtosecond optics. In: Proc. Compd. Optoelectron. Mater. Devices (1995) p. 69

    Google Scholar 

  • M.S. Sherwin, C.A. Schmuttenmaer, P.H. Bucksbaum: Opportunities in THz science. In: Rep.  DOE-NSF-NIH Workshop, Arlington (2004) pp. 12–14

    Google Scholar 

  • S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston: The 2017 terahertz science and technology roadmap, J. Phys. D 50, 043001 (2017)

    Article  CAS  Google Scholar 

  • L. Duvillaret, F. Garet, J.-L. Coustaz: A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996)

    Article  CAS  Google Scholar 

  • D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger: Far infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt. Soc. Amer. B 7, 2006–2015 (1990)

    Article  CAS  Google Scholar 

  • M. van Exter, D. Grischkowsky: Optical and electronic properties of doped silicon from 0.1 to 2 THz, Appl. Phys. Lett. 56, 1694–1696 (1990)

    Article  Google Scholar 

  • M.C. Beard, G.M. Turner, C.A. Schmuttenmaer: Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy, J. Appl. Phys. 90, 5915–5923 (2001)

    Article  CAS  Google Scholar 

  • J.E. Pedersen, S.R. Keiding: THz time-domain spectroscopy of nonpolar liquids, IEEE J. Quantum Electron. 28, 2518–2522 (1992)

    Article  CAS  Google Scholar 

  • J.F. Whitaker, F. Gao, Y. Liu: Terahertz-bandwidth pulses for coherent time-domain spectroscopy, Proc. SPIE 2145, 168–177 (1994)

    Article  CAS  Google Scholar 

  • P.H. Bolivar, M. Brucherseifer, J.G. Rivas, R. Gonzalo, I. Ederra, A.L. Reynolds, M. Holker, P. de Maagt: Measurement of the dielectric constant and loss tangent of high dielectric constant materials at terahertz frequencies, IEEE Trans. Microw. Theory Tech. 51, 1062–1066 (2003)

    Article  CAS  Google Scholar 

  • A. Quema, H. Takahashi, M. Sakai, M. Goto, S. Ono, N. Sarukura, R. Shioda, N. Yamada: Identification of potential estrogenic environmental pollutants by terahertz transmission spectroscopy, Jpn. J. Appl. Phys. 42, L932–934 (2003)

    Article  CAS  Google Scholar 

  • Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide: Component analysis of chemical mixtures using terahertz spectroscopic imaging, Opt. Commun. 234, 125–129 (2004)

    Article  CAS  Google Scholar 

  • H. Harde, J. Zhao, M. Wolff, R.A. Cheville, D. Grischkowsky: THz time-domain spectroscopy on ammonia, J. Phys. Chem. A 105, 6038–6047 (2001)

    Article  CAS  Google Scholar 

  • P.R. Smith, D.H. Auston, M.C. Nuss: Subpicosecond photconducting dipole antennas, IEEE J. Quantum Electron. 24, 255–260 (1988)

    Article  Google Scholar 

  • C. Fattinger, D. Grischkowsky: Terahertz beams, Appl. Phys. Lett. 54(6), 490–492 (1989)

    Article  Google Scholar 

  • M. Hangyo, T. Nagashima, S. Nagashima: Spectroscopy by pulsed terahertz radiation, Meas. Sci. Technol. 13, 1727–1738 (2002)

    Article  CAS  Google Scholar 

  • X.-C. Zhang, J. Hu: Generation and detection of THz waves. In: Introduction to THz Wave Photonics (Springer, New York 2010) pp. 27–28

    Chapter  Google Scholar 

  • X. Yin, B.W.-H. Ng, D. Abbott: Terahertz sources and detectors. In: Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction (Springer, New York 2012) pp. 9–26

    Chapter  Google Scholar 

  • N.M. Burford, M.O. El-Shenawee: Review of terahertz photoconductive antenna technology, Opt. Eng. 56(1), 010901 (2017), https://doi.org/10.1117/1.OE.56.1.010901

    Article  Google Scholar 

  • M.C. Beard, G.M. Turner, C.A. Schmuttenmaer: Terahertz spectroscopy, J. Phys. Chem. B 106, 7146–7159 (2002)

    Article  CAS  Google Scholar 

  • P.Y. Han, X.-C. Zhang: Free-space coherent broadband terahertz time-domain spectroscopy, Meas. Sci. Technol. 12, 1747–1756 (2001)

    Article  CAS  Google Scholar 

  • B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, A. Loidl: Terahertz BWO-spectroscopy, Int. J. Infrared Millim. Waves 26(9), 1217–1124 (2005)

    Article  Google Scholar 

  • M. Born, E. Wolf: Principles of Optics, 6th edn. (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  • H. Eisele, M. Naftlay, J.R. Fletcher: A simple interferometer for the characterization of sources at terahertz frequencies, Meas. Sci. Technol. 18, 2623–2628 (2007)

    Article  CAS  Google Scholar 

  • S.R. Ganti, S.K. Sundaram, J.S. McCloy: Frequency dependent optical and dielectric properties of zinc sulfide in terahertz regime, Infrared Phys. Technol. 65, 67–71 (2014)

    Article  CAS  Google Scholar 

  • M. Naftaly: Terahertz Metrology (Artech House, London 2015)

    Google Scholar 

  • B.P. Gorshunov, A.A. Volkov, A.S. Prokhorov, I.E. Spektor: Methods of terahertz-subterahertz BWO spectroscopy of conducting materials, Phys. Solid State 50(11), 2001–2012 (2008)

    Article  CAS  Google Scholar 

  • A.I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, W. Petry: Collective nature of the boson peak and universal transboson dynamics of glasses, Phys. Rev. Lett. 92(24), 245508 (2004)

    Article  CAS  Google Scholar 

  • U. Strom, P. Taylor: Temperature and frequency dependences of the far infrared and microwave optical absorption in amorphous materials, Phys. Rev. B 16, 5512–5522 (1977)

    Article  CAS  Google Scholar 

  • A. Pasquarello, R. Car: Dynamical charge tensors and infrared spectrum of amorphous SiO2, Phys. Rev. Lett. 79, 1766–1769 (1997)

    Article  CAS  Google Scholar 

  • F.L. Galeener, A.J. Leadbetter, M.W. Stringfellow: Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2, Phys. Rev. B 27, 1052–1078 (1983)

    Article  CAS  Google Scholar 

  • L. Deich: Far-infrared attenuation in glasses, Phys. Rev. B 49, 109–113 (1994)

    Article  CAS  Google Scholar 

  • E. Schlömann: Dielectric losses in ionic crystals with disordered charge distributions, Phys. Rev. 135, A413–A419 (1964)

    Article  Google Scholar 

  • S.N. Taraskin, S.R. Elliott: Propagation of plane-wave vibrational excitations in disordered systems, Phys. Rev. B 61(18), 12017–12030 (2000)

    Article  CAS  Google Scholar 

  • S.N. Taraskin, Y.L. Loh, G. Natarajan, S.R. Elliott: Origin of the boson peak in systems with lattice disorder, Phys. Rev. Lett. 86(7), 1255–1258 (2001)

    Article  CAS  Google Scholar 

  • S.N. Taraskin, S.I. Simdyankin, S.R. Elliott, J.R. Neilson, T. Lo: Universal features of terahertz absorption in disordered materials, Phys. Rev. Lett. 97, 055504 (2006)

    Article  CAS  Google Scholar 

  • S.N. Taraskin: Infrared absorption in glasses and their crystalline counterparts, J. Phys. Condens. Matter. 19, 415113 (2007)

    Article  CAS  Google Scholar 

  • B. Rufflé, G. Guimbretière, E. Courten, R. Vacher, G. Monaco: Glass-specific behavior in the damping of acousticlike vibrations, Phys. Rev. Lett. 96, 045502 (2006)

    Article  CAS  Google Scholar 

  • S.L. Isakov, S.N. Ishmaev, V.K. Malinovsky, V.N. Novikov, P.P. Parshin, S.N. Popov, A.P. Sokolov, M.G. Zemlyanov: Transformation of the vibrational spectrum and structure of glasses after quenching, Solid State Commun. 86, 123–127 (1993)

    Article  CAS  Google Scholar 

  • A.P. Sokolov, A. Kisliuk, D. Quitmann, E. Duval: Evaluation of density of vibrational states of glasses from low-frequency Raman spectra, Phys. Rev. B 48, 7692–7695 (1993)

    Article  CAS  Google Scholar 

  • A.A. Maradudin, R.F. Wallis: Lattice anharmonicity and optical absorption in polar crystals. II. Classical treatment in the linear approximation, Phys. Rev. 123, 777–789 (1961)

    Article  CAS  Google Scholar 

  • M. Wilson, P.A. Madden, M. Hemmati, C.A. Angell: Polarization effects, network dynamics, and the infrared spectrum of amorphous SiO2, Phys. Rev. Lett. 77, 4023–4026 (1996)

    Article  CAS  Google Scholar 

  • D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon, Phys. Rev. B 51, 12947–12957 (1995)

    Article  CAS  Google Scholar 

  • M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhal, G. Seifert: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B 58, 7260–7268 (1998)

    Article  CAS  Google Scholar 

  • S.I. Simdyankin, S.R. Elliott, Z. Hajnal, T.A. Niehaus, T. Fravenheim: Simulation of physical properties of the chalcogenide glass As2S3 using a density-functional-based tight-binding method, Phys. Rev. B 69, 144202 (2004)

    Article  CAS  Google Scholar 

  • P. Lunkenheimer, A. Loidl: Response of disordered matter to electromagnetic fields, Phys. Rev. Lett. 91(20), 20760 (2003)

    Article  CAS  Google Scholar 

  • A.K. Jonscher: The ‘universal' dielectric response, Nature 267(5613), 673–679 (1977)

    Article  CAS  Google Scholar 

  • S.N. Taraskin, S.I. Simdyankin, S.R. Elliott: The atomic charge distribution in glasses obtained by terahertz spectroscopy, J. Phys. Condens. Matter 19, 455216 (2007)

    Article  CAS  Google Scholar 

  • C. Massobrio, M. Celino, A. Pasquarello: Charge fluctuations and concentration fluctuations at intermediate-range distances in the disordered network-forming materials SiO2, SiSe2, and GeSe2, Phys. Rev. B 70, 174202 (2004)

    Article  CAS  Google Scholar 

  • S. Blaineau, P. Jund: Electronic structure of amorphous germanium disulfide via density-functional molecular dynamics simulations, Phys. Rev. B 70, 184210 (2004)

    Article  CAS  Google Scholar 

  • L. Giacomazzi, P. Umari, A. Pasquarello: Vibrational spectra of vitreous germania from first-principles, Phys. Rev. B 74, 155208 (2006)

    Article  CAS  Google Scholar 

  • L. Giacomazzi, C. Massobrio, A. Pasquarello: First-principles investigation of the structural and vibrational properties of vitreous GeSe2, Phys. Rev. B 75, 174207 (2007)

    Article  CAS  Google Scholar 

  • J.W. Lamb: Miscellaneous data on materials for millimetre and submillimetre optics, Int. J. lnfrared Millim. Waves 17(19), 1997–2034 (1996)

    Article  CAS  Google Scholar 

  • G.J. Simonis: Index to the literature dealing with the near-millimeter wave properties of materials, Int. J. lnfrared Millim. Waves 3(4), 439–469 (1996)

    Article  Google Scholar 

  • I. Wilke, M. Khazan, C.T. Rieck, P. Kuzel, T. Kaiser, C. Jackel, H. Kurz: Terahertz surface resistance of high temperature superconducting thin films, J. Appl. Phys. 87(6), 2984–2988 (2000)

    Article  CAS  Google Scholar 

  • R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, T. Kurner: Terahertz characterization of building materials, Elect. Lett. 41(18), 1002–1004 (2005)

    Article  Google Scholar 

  • T. Ohsaka, S. Oshikawa: Effect of OH content on the far-infrared absorption and low-energy states in silica glass, Phys. Rev. B 57, 4995–4998 (1998)

    Article  CAS  Google Scholar 

  • B.E. Hubbard, N.I. Agladze, J.J. Tu, A.J. Sievers: Infrared and Raman study of two-level systems in fiber optic quality a-SiO2 and a-SiO2:GeO2, Phys. B 316/317, 531–534 (2002)

    Article  Google Scholar 

  • T.S. Grigera, V. Martin-Mayer, G. Parisi, P. Verrocchio: Phonon interpretation of the 'boson peak' in supercooled liquids, Nature 422(6929), 289–292 (2003)

    Article  CAS  Google Scholar 

  • N.V. Sourouvtsev: Evaluation of terahertz density of vibrational states from specific-heat data: Application to silica glass, Phys. Rev. E 64, 061102 (2001)

    Article  CAS  Google Scholar 

  • L. Thrane, R.H. Jacobsen, P.U. Jepsen, S.R. Keiding: THz reflection spectroscopy of liquid water, Chem. Phys. Lett. 240, 330–333 (1995)

    Article  CAS  Google Scholar 

  • J.T. Kindt, C.A. Schmuttenmaer: Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100, 10373–10376 (1996)

    Article  CAS  Google Scholar 

  • R. Harel, I. Brener, L.N. Pfeiffer, K.W. West, J.M. Vandenberg, S.G. Chu, J.D. Wynn: Coherent terahertz radiation from cavity polaritons in GaAs/AlGaAs microcavities, Phys. Stat. Sol. (a) 178(1), 365–372 (2000)

    Article  CAS  Google Scholar 

  • S. Nishizawa, T. Iwamoto, K. Shirawachi, M. Wada Takeda, M. Tani, K. Sakai: An advanced infrared instrumentation of composite THz time-domain spectrometry combined with Michelson interferometer. In: Proc. 1999 IEEE 7th Int. Conf. Terahertz Electron. THz'99 (1999) pp. 308–310

    Google Scholar 

  • S. Kojima, H. Kitahara, S. Nishizawa, M. Wada Takeda: Dielectric properties of ferroelectric lithium tantalate crystals studied by terahertz time-domain spectroscopy, Jpn. J. Appl. Phys. 42, 6238–6241 (2003)

    Article  CAS  Google Scholar 

  • S. Kojima, H. Kitahara, S. Nishizawa, Y.S. Yang, M. Wada Takeda: Terahertz time-domain spectroscopy of low-energy excitations in glasses, J. Mol. Struct. 744–747, 243–246 (2005)

    Article  CAS  Google Scholar 

  • M. Naftaly, A.P. Foulds, R.E. Miles, A.G. Davies: Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties, Int. J. Infrared Millim. Waves 26(1), 55–64 (2005)

    Article  CAS  Google Scholar 

  • S.O. Kasap: Frequency dependence: Dielectric constant and loss. In: Principles of Electronic Materials and Devices, 2nd edn., (McGraw-Hill, New York 2002) pp. 526–534

    Google Scholar 

  • P.U. Jepsen, B.M. Fischer: Dynamic range in terahertz time-domain transmission and reflection spectroscopy, Opt. Lett. 30(1), 29–31 (2005)

    Article  Google Scholar 

  • M. Naftaly, R.E. Miles: Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties, J. Appl. Phys. 102, 043517 (2007)

    Article  CAS  Google Scholar 

  • M. Naftaly, R.E. Miles: Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared, J. Non-Cryst. Solids 351, 3341–3346 (2005)

    Article  CAS  Google Scholar 

  • L. Ghivelder, W.A. Phillips: Far infrared absorption in disordered solids, J. Non-Cryst. Solids 109(2/3), 280–288 (1989)

    Article  CAS  Google Scholar 

  • K.W. Hutt, W.A. Phillips, R.J. Butcher: Far-infrared properties of dilute hydroxyl groups in amorphous silica matrix, J. Phys. Condens. Matter 1, 4767–4772 (1989)

    Article  CAS  Google Scholar 

  • T.J. Parker, J.E. Ford, W.G. Chambers: The optical constants of pure fused quartz in the far-infrared, Infrared Phys. 18, 215–219 (1978)

    Article  CAS  Google Scholar 

  • D.R. Lide: CRC Handbook of Chemistry and Physics, 87th edn. (CRC, Boca Raton 2007)

    Google Scholar 

  • G. Winterling: Very-low-frequency Raman scattering in vitreous silica, Phys. Rev. B 12, 2432–2440 (1975)

    Article  CAS  Google Scholar 

  • B. Hehlen, E. Coutens, R. Vacher, A. Yamanaka, M. Kataoka, K. Inoue: Hyper-Raman scattering observation of the boson peak in vitreous silica, Phys. Rev. Lett. 84, 5355–5358 (2000)

    Article  CAS  Google Scholar 

  • T. Nakayama: Boson peak and terahertz frequency dynamics of vitreous silica, Rep. Prog. Phys. 65, 1195–1242 (2002)

    Article  CAS  Google Scholar 

  • S. Kojima, M. Kodama: Boson peak in alkali borate glass, Phys. B 263/264, 336 (1999)

    Article  Google Scholar 

  • S. Kojima, V.N. Novikov, M. Kodama: Fast relaxation, boson peak, and anharmonicity in Li2O–B2O3 glasses, J. Chem. Phys. 113(15), 6344 (2000)

    Article  CAS  Google Scholar 

  • V.L. Gurevich, D.A. Parshin, H.R. Schober: Anharmonicity, vibrational instability, and the boson peak in glasses, Phys. Rev. B 67, 094203 (2003)

    Article  CAS  Google Scholar 

  • M. Naftaly, R.E. Miles: Terahertz interactions with amorphous materials. In: Terahertz Frequency Detection and Identification of Materials and Objects, ed. by R.E. Miles, X.-C. Zhang, H. Eisele, A. Krotkus (Springer, Dordrecht 2007) pp. 107–122

    Chapter  Google Scholar 

  • J.A. Duffy: The refractivity and optical basicity, J. Non-Cryst. Solids 86(1/2), 149–160 (1986)

    Article  CAS  Google Scholar 

  • J.M. Jewell: Model for the thermo-optic behavior of sodium borate and sodium aluminosilicate glasses, J. Non-Cryst. Solids 146, 145–153 (1992)

    Article  CAS  Google Scholar 

  • S.A. Brawer: Relaxation in viscous liquids, J. Chem. Phys. 81(2), 954–975 (1984)

    Article  CAS  Google Scholar 

  • D.R. Uhlmann: Glass formation, J. Non-Cryst. Solids 25(1–3), 42–85 (1977)

    Article  CAS  Google Scholar 

  • R.A.H. El-Mallawany: Tellurite Glasses Handbook: Physical Properties and Data (CRC, Boca Raton 2002)

    Google Scholar 

  • G.W. Brady: X-ray study of tellurium oxide glass, J. Chem. Phys. 24, 477–478 (1956)

    Article  CAS  Google Scholar 

  • G.W. Brady: Structure of tellurium oxide glass, J. Chem. Phys. 27, 300–303 (1957)

    Article  CAS  Google Scholar 

  • Y. Dimitriev, V. Dimitrov, E. Gatev, E. Kashchieva, H. Petkov: Effect of the mode formation on the structure of tellurite glasses, J. Non-Cryst. Solids 95/96, 937–944 (1987)

    Article  Google Scholar 

  • S. Neov, V. Kozhukharov, I. Gerasimova, K. Krezhov, B. Sidzhimov: A model for structural recombination in tellurite glasses, J. Phys. C 12(13), 2475–2485 (1979)

    Article  CAS  Google Scholar 

  • Y. Shimizugawa, T. Maeseto, S. Suehara, S. Inoue, A. Nukui: EXAFS and RDF studies of TeO2–Li2O glasses, J. Mater. Res. 10, 405–410 (1995)

    Article  CAS  Google Scholar 

  • H. Yamamoto, H. Nasu, J. Matsuoka, K. Kamiya: X-ray absorption fine structure (XAFS) study on the coordination of Te in PbO-TiO2-TeO2 glasses with high third-order optical non-linearity, J. Non-Cryst. Solids 170, 87–96 (1994)

    Article  CAS  Google Scholar 

  • J. Heo, D. Lam, G.H. Sigel, E.A. Mendoza, D.A. Hensley: Spectroscopic analysis of the structure and properties of alkali tellurite glasses, J. Am. Ceram. Soc. 75, 277–281 (1992)

    Article  CAS  Google Scholar 

  • S. Khatir, F. Romain, J. Portier, S. Rossignol, B. Tanguy, J.J. Videau, S. Turrell: Raman studies of recrystallized glasses in the binary TeO2-PbO system, J. Mol. Struct. 298, 13–16 (1993)

    Article  CAS  Google Scholar 

  • C. Duverger, M. Bouazaoui, S. Turrell: Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses, J. Non-Cryst. Solids 220, 169–177 (1997)

    Article  CAS  Google Scholar 

  • Y. Dimitriev, E. Kashchieva, I. Ivanova, D. Khristova: Liquation in three-component tellurite systems TeO2-B2O3-MnOm. MnOm = Al2O3, Ga2O3, Cr2O3, CuO, Ag2O, MoO3, Sb2O3, Stroit. Mater. Silik. Prom. 24(9), 24 (1983)

    Google Scholar 

  • E. Kashchieva: Phase Separation in Tellurite Systems, Ph.D. Thesis (Sofia University, Sofia 1984)

    Google Scholar 

  • T. Sekiya, N. Mochida, S. Ogawa: Structural Study of WO3-TeO2 glasses, J. Non-Cryst. Solids 176, 105–115 (1994)

    Article  CAS  Google Scholar 

  • B.V.R. Chowdari, P.P. Kumari: Raman spectroscopic study of ternary silver telluride glasses, Mater. Res. Bull. 34(2), 327–342 (1999)

    Article  CAS  Google Scholar 

  • G.S. Murugan, T. Suzuki, Y. Ohishi: Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands, J. Appl. Phys. 100, 023107–023106 (2006)

    Article  CAS  Google Scholar 

  • T. Sekiya, N. Mochida, A. Ohtsuka: Raman Spectra of MO-TeO2 (M = Mg, Sr, Ba and Zn) glasses, J. Non-Cryst. Solids 168, 106–114 (1994)

    Article  CAS  Google Scholar 

  • S. Sakida, S. Hayakawa, T.J. Yoko: Part 1. 125Te NMR study of tellurite crystals, J. Non-Cryst. Solids 243, 1–12 (1999)

    Article  CAS  Google Scholar 

  • S. Sakida, S. Hayakawa, T. Yoko: Part 2.125Te NMR study of of M2O–TeO2 (M = Li, Na, K, Rb and Cs) glasses, J. Non-Cryst. Solids 243, 13–25 (1999)

    Article  CAS  Google Scholar 

  • S. Sakida, S. Hayakawa, T. Yoko: 125Te NMR study of MO-TeO2 (M = Mg, Zn, Sr, Ba and Pb) glasses, J. Ceram. Soc. Jpn. 107, 395–402 (1999)

    Article  CAS  Google Scholar 

  • S. Sakida, S. Hayakawa, T. Yoko: 125Te, 27Al, and 71Ga NMR study of M2O3–TeO2 (M = Al and Ga) glasses, J. Am. Ceram. Soc. 84, 836–842 (2001)

    Article  CAS  Google Scholar 

  • T. Nishida, M. Yamada, H. Ide, Y. Takashima: Correlation between the structure and glass transition temperature of potassium, magnesium and barium tellurite glasses, J. Mater. Sci. 25, 3546–3550 (1990)

    Article  CAS  Google Scholar 

  • K.J. Rao, M.H. Bhat: Investigation of lithium chloride–lithium borate–tellurium dioxide glasses: An example of complex anionic speciation, Phys. Chem. Glasses 42, 255–264 (2001)

    CAS  Google Scholar 

  • M.H. Bhat, M. Kandavel, M. Ganguli, K.J. Rao: Li+ ion conductivities in borotellurite glasses, Bull. Mater. Sci. 27, 189–198 (2004)

    Article  CAS  Google Scholar 

  • M. Arnaudov, V. Dimitrov, Y. Dimitriev, L. Markova: Infrared spectral investigation of tellurites, Mater. Res. Bull. 17, 1121–1129 (1982)

    Article  CAS  Google Scholar 

  • R. Akagi, K. Handa, N. Ohtori, A.C. Hannon, M. Tatsumisago, N. Umesaki: High-temperature structure of K2O–TeO2 glasses, J. Non-Cryst. Solids 256/257, 111–118 (1999)

    Article  Google Scholar 

  • M. Çelikbilek, A.E. Ersundu, S. Aydin: Preparation and characterization of TeO2–WO3–Li2O glasses, J. Non-Cryst. Solids 378, 247–253 (2015)

    Article  CAS  Google Scholar 

  • T. Komatsu, T. Moguchi, Y. Benino: Heat capacity changes and structural relaxation at glass transition in mixed-alkali tellurite glasses, J. Non-Cryst. Solids 222, 206–211 (1997)

    Article  CAS  Google Scholar 

  • K. Putz, P.F. Green: Fragility of mixed alkali tellurites, J. Non-Cryst. Solids 337, 254–260 (2004)

    Article  CAS  Google Scholar 

  • S.B. Kang, M.H. Kwak, B.J. Park, S. Kim, H.-C. Ryu, D.C. Chung, S.Y. Jeong, D.W. Kang, S.K. Choi, M.C. Paek, E.-J. Cha, K.Y. Kang: Optical and dielectric properties of chalcogenide glasses at terahertz frequencies, ETRI Journal 31(6), 667–674 (2009)

    Article  Google Scholar 

  • E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, S.N. Taraskin, S.R. Elliott: Extracting accurate optical parameters from glasses using terahertz time-domain spectroscopy, J. Non-Cryst. Solids 355, 1824–1827 (2009)

    Article  CAS  Google Scholar 

  • S.K. Sundaram, B.J. Riley, J.V. Crum: Terahertz transmission spectroscopy of chalcogenide glasses. In: Proc. IEEE IRMMW-THz, Pasadena (2008)

    Google Scholar 

  • J.S. McCloy, B.J. Riley, S.K. Sundaram, H.A. Qiao, J.V. Crum, B.R. Johnson: Structure-optical property correlations of arsenic sulfide glasses in visible, infrared, and sub-millimeter regions, J. Non-Cryst. Solids 356, 1288–1293 (2010)

    Article  CAS  Google Scholar 

  • C. Yatongchai, A.W. Wren, S.K. Sundaram: Characterization of hydroxyapatite-glass composites using terahertz time-domain spectroscopy, J. Infrared Millim. Terahertz Waves 36, 81–93 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the support from the Energy Conversion Initiative, Pacific Northwest National Laboratory (PNNL). The author acknowledges THz measurements performed by Mr. Rob Koch (Alfred University), peer review by Dr. John S. McCloy (Washington State University, Pullman, WA), some of the illustrations by Mr. Mike Perkins (PNNL), and suggestions from Professor Robert E. Miles (University of Leeds, UK). The author also acknowledges support from Inamori Foundation and Kazuo Inamori School of Engineering at Alfred University. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Sundaram, S.K. (2019). Terahertz Time-Domain Spectroscopy of Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_26

Download citation

Publish with us

Policies and ethics