Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Borate glasses are both scientifically interesting and surprisingly practical. As additives to silicate-based glasses they can be exceedingly useful. This chapter focusses mainly on the mathematical relationships between structure and property. Atomic structure at both the short and intermediate-range levels was determined by various spectroscopies including nuclear magnetic resonance, neutron scattering, and vibrational spectroscopy. Properties examined include density, molar volume, packing fraction, the glass transition temperature, and stiffness. In many studies, these are model glasses that are relatively easy to make across wide-compositional limits at relatively low temperatures, but they do suffer from hygroscopicity, which leads to degradation of borate glasses in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ITC Inc.: Sciglass Professional Version 7.12 (2014)

    Google Scholar 

  2. S. Feller: Density, thermal properties and the glass transition temperature of glasses. In: Modern Glass Charactenzation, ed. by M. Affatigato (Wiley, Hoboken 2015) pp. 1–31

    Google Scholar 

  3. G. Ding, M.F.A. Hassan, M.H. Lie, Z.-W. Sun, Y. Wang: Low refractive index material by sputtering deposition method, US Patent 20140170049A1 (2014)

    Google Scholar 

  4. A. Odinokov, A. Freidzon, A. Bagaturyants: Molecular dynamics simulation of the glass transition in 4,4'-N,N'-dicarbazolylbiphenyl, Chem. Phys. Lett. 633, 41–46 (2015)

    Article  CAS  Google Scholar 

  5. R.L. Mozzi, B.E. Warren: The Structure of vitreous boron oxide, J. Appl. Crystallogr. 3, 251–257 (1970), https://doi.org/10.1107/S0021889870006143

    Article  CAS  Google Scholar 

  6. B.E. Warren: X-ray diffraction study of the structure of glass, Chem. Rev. 26(2), 237–255 (1940)

    Article  CAS  Google Scholar 

  7. A.H. Silver, P.J. Bray: Nuclear magnetic resonance absorption in glass. I. Nuclear quadrupole effects in boron oxide, soda-boric oxide, and borosilicate glasses, J. Chem. Phys. (1958), https://doi.org/10.1063/1.1744697

    Article  Google Scholar 

  8. D. Kline, P.J. Bray, H. Kriz: The structure of crystalline boron oxide, J. Chem. Phys. 48, 5277 (1968)

    Article  CAS  Google Scholar 

  9. G.E. Jellison Jr., L.W. Panek, P.J. Bray, G.B. Rouse Jr.: Determinations of structure and bonding in vitreous B2O3 by means of 10B, 11B, and 17O NMR, J. Chem. Phys. 66(2), 802–1812 (1977)

    Article  CAS  Google Scholar 

  10. F.L. Galeener, A.E. Geissberger: Raman studies of B2O3 glass structure: 10B→11B isotopic substitution, J. Phys. Colloq. 43, C9-343–C9-346 (1982)

    Article  Google Scholar 

  11. C.F. Windisch, W.M. Risen: Vibrational spectra of oxygen- and boron-isotopically substituted B2O3 Glasses, J. Non-Cryst. Solids 48, 307–323 (1982)

    Article  CAS  Google Scholar 

  12. A.C. Hannon, D.I. Grimley, R.A. Hulme, A.C. Wright, R.N. Sinclair: Boroxol groups in vitreous boron oxide: New evidence from neutron diffraction and inelastic neutron scattering studies, J. Non-Cryst. Solids 177, 299–316 (1994)

    Article  CAS  Google Scholar 

  13. R.N. Sinclair, C.E. Stone, A.C. Wright, I.G. Polyakova, N.M. Vedishcheva, B.A. Sahkmatkin, S. Feller, B.C. Johanson, P. Venhuizen, R.B. Williams: Inelastic neutron scattering studies of superstructural units in borate glasses and crystalline phases, Phys. Chem. Glasses 41(5), 286–289 (2000)

    CAS  Google Scholar 

  14. R.E. Youngman, J.W. Zwanziger: Multiple boron sites in borate glass detected with dynamic angle spinning nuclear magnetic resonance, J. Non-Cryst. Solids 168, 293–297 (1994)

    Article  CAS  Google Scholar 

  15. S.J. Gravina, P.J. Bray, G.L. Petersen: Pure nuclear quadrupole resonance spectroscopy studies of the structure of glasses, J. Non-Cryst. Solids 123, 165–169 (1990)

    Article  CAS  Google Scholar 

  16. I. Hung, A.P. Howes, B.G. Parkinson, T. Anup, A. Sampson, S.P. Brown, P.F. Harrison, D. Holland, R. Dupree: Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation (DOR) NMR spectroscopy, J. Solid State Chem. 182, 2402–2408 (2009)

    Article  CAS  Google Scholar 

  17. P.J. Bray, J.G. O'Keefe: Nuclear magnetic resonance investigations of the structure of alkali borate glasses, Phys. Chem. Glasses 4(2), 37–46 (1963)

    Google Scholar 

  18. G.E. Jellison Jr., S. Feller, P.J. Bray: A re-examination of the fraction of 4-coordinated boron atoms in the lithium borate glass system, Phys. Chem. Glasses 19, 52–53 (1978)

    CAS  Google Scholar 

  19. S.A. Feller: Li7, B10, B11 and O17 Nuclear Magnetic Resonance Studies of Lithium Borate Glasses and Related Compounds, Ph.D. Thesis (Brown University, Providence 1980)

    Google Scholar 

  20. S. Feller, S. Nijhawan, M. Royle, J. MacKenzie, J. Taylor, M. Sharma, E.I. Kamitsos, G.D. Chryssikos, A.P. Patsis, P.J. Bray, P.E. Stallworth: Physical properties and spectroscopy of rubidium and cesium borate glasses with exceptionally high alkali content, Chim. Chron. 23(2/3), 309–314 (1994)

    CAS  Google Scholar 

  21. G.D. Chryssikos, E.I. Kamitsos, A.P. Patsis, M.A. Karakassides: On the structure of alkali borate glasses approaching the orthoborate composition, Mater. Sci. Eng. B 7, 1–4 (1990)

    Article  Google Scholar 

  22. A. Winterstein-Beckmann, D. Möncke, D. Palles, E.I. Kamitsos, L. Wondraczek: Structure-property correlations in highly modified Sr, Mn-borate glasses, J. Non-Cryst. Solids 376, 165–174 (2013)

    Article  CAS  Google Scholar 

  23. M. Shibata, C. Sanchez, H. Patel, J. Stark, S. Feller, G. Sumcad, J. Kasper: The density of lithium borate glasses related to atomic arrangements, J. Non-Cryst. Solids 85, 29–41 (1986)

    Article  CAS  Google Scholar 

  24. S. Giri, C. Gaebler, J. Helmus, M. Kodama, M. Affatigato, S. Feller: A general study of packing in alkali glass systems, J. Non-Cryst. Solids 347, 87–92 (2004)

    Article  CAS  Google Scholar 

  25. N.P. Lower, J.L. McRae, H.A. Feller, A.R. Betzen, S. Kapoor, M. Affatigato, S.A. Feller: Physical properties of alkaline-earth borate glasses prepared over an extended range of compositions, J. Non-Cryst. Solids 293–295, 669–675 (2001)

    Article  Google Scholar 

  26. G.J. Ongie, S.A. Feller, M. Affatigato, M. Kodama: Differential volume changes in trigonal and tetrahedral borate units, Phys. Chem. Glasses 47(4), 543–547 (2006)

    CAS  Google Scholar 

  27. S. Kroeker, S.A. Feller, M. Affatigato, C.P. O'Brien, W. Clarida: Multiple four-coordinated boron sites in cesium borate glasses and their relation to medium range order, Phys. Chem. Glasses 44(2), 54–58 (2003)

    CAS  Google Scholar 

  28. E.M. Ratai, M. Janssen, J.D. Epping, J.C.C. Chan, H. Eckert: Local and medium range order in alkali borate glasses: An overview of recent solid state NMR results, Phys. Chem. Glasses 44(2), 45–53 (2003)

    CAS  Google Scholar 

  29. S. Feller, M. Affatigato, S. Giri, A. Basu, M. Kodama: The intermediate range order of borate glasses related to elastic properties, Phys. Chem. Glasses 44(2), 117–120 (2003)

    CAS  Google Scholar 

  30. R. Haworth, J.L. Shaw, A.C. Wright, R.N. Sinclair, K.S. Knight, J.W. Taylor, N. Vedishcheva, I.G. Polyakova, B.A. Shakhmatkin, S.A. Feller, M. Affatigato, D. Winslow: Superstructural units in vitreous and crystalline caesium borates, Phys. Chem. Glasses 46, 477–482 (2005)

    CAS  Google Scholar 

  31. G.E. Jellison Jr., P.J. Bray: A determination of the distributions of quadrupole coupling constants in borate glasses using 10B NMR, Solid State Commun. 19, 517–520 (1976)

    Article  CAS  Google Scholar 

  32. S. Feller, W.J. Dell, P.J. Bray: 10B NMR studies of lithium borate glasses, J. Non-Cryst. Solids 51, 21–30 (1982)

    Article  CAS  Google Scholar 

  33. J. Zwanziger, R. Youngman, M. Braun: High resolution NMR studies of borate glass structure. In: Proc. Second Int. Conf. Borate Glasses Cryst. Melts, ed. by A.C. Wright, S.A. Feller, A.C. Hannon (Society of Glass Technology, Sheffield 1997) pp. 21–32

    Google Scholar 

  34. J. Kocher: Etude des borates de rubidium et de cesium, Rev. Chim. Miner. 3(2), 221 (1966)

    Google Scholar 

  35. M. Affatigato, S. Feller, E. Khaw, D. Feil, B. Teoh, O. Mathews: The glass transition temperature of lithium and lithium-sodium borate glasses over wide ranges of composition, Phys. Chem. Glasses 31(1), 19–24 (1990)

    CAS  Google Scholar 

  36. E.I. Kamitsos, A.P. Patsis, G.D. Chryssikos: Infrared reflectance investigation of alkali diborate glasses, J. Non-Cryst. Solids 152, 246–257 (1992)

    Article  Google Scholar 

  37. S. Feller, T. Mullenbach, M. Franke, S. Bista, A. O'Donovan-Zavada, K. Hopkins, D. Starkenberg, J. McCoy, D. Leipply, J. Stansberry, M. Affatigato, D. Holland, M. Smith, S. Kroeker, V. Michaelis, J. Wren: Structure and properties of barium and calcium borosilicate glasses, Phys. Chem. Glasses 53(5), 210–218 (2012)

    CAS  Google Scholar 

  38. E.I. Kamitsos, G.D. Chryssikos, M.A. Karakassides: Glass transition phenomena and cation vibrations in alkali borate glasses, Phys. Chem. Glasses 29, 121–126 (1988)

    CAS  Google Scholar 

  39. Y.D. Yiannopoulos, G.D. Chryssikos, E.I. Kamitsos: Structure and properties of alkaline earth borate glasses, Phys. Chem. Glasses 42, 164–172 (2001)

    CAS  Google Scholar 

  40. S.W. Martin, D. Bain, K. Budhwani, S. Feller: A 29Si MAS-NMR study of the short range order of lithium borosilicate glasses, J. Am. Ceram. Soc. 75(5), 1117–1122 (1992)

    Article  CAS  Google Scholar 

  41. J.W. MacKenzie, A. Bhatnagar, D. Bain, S. Bhowmik, C. Parameswar, K. Budhwani, S. Feller, M.L. Royle, S.W. Martin: 29Si MAS-NMR study of the short-range order in alkali borosilicate glasses, J. Non-Cryst. Solids 177, 269–276 (1994)

    Article  CAS  Google Scholar 

  42. W.J. Dell, P.J. Bray, S.Z. Xiao: 11B NMR studies and structural modeling of Na2O\(\cdot\)B2O3\(\cdot\)SiO2 glasses of high soda content, J. Non-Cryst. Solids 58(1), 1–16 (1983)

    Article  CAS  Google Scholar 

  43. D. Feil, S. Feller: The density of sodium borosilicate glasses related to atomic arrangements, J. Non-Cryst. Solids 119, 103–111 (1989)

    Article  Google Scholar 

  44. S. Feller, J. Kottke, J. Welter, S. Nijhawan, R. Boekenhauer, H. Zhang, D. Feil, C. Paramswar, K. Budhwani, M. Affatigato, G. Bhasin, S. Bhowmik, J. MacKenzie, M. Royle, S. Kambeyanda, P. Pandikuthira, M. Sharma: Physical properties of alkali borosilicate glasses. In: Proc. Second Int. Conf. Borate Glasses Cryst. Melts, ed. by A.C. Wright, S.A. Feller, A.C. Hannon (Society of Glass Technology, Sheffield 1997) pp. 246–253

    Google Scholar 

  45. R. Boekenhauer, H. Zhang, D. Bain, S. Feller, S. Kambeyanda, K. Budhwani, P. Pandikuthira: The glass transition temperature of lithium borosilicate glasses related to atomic arrangements, J. Non-Cryst. Solids 175, 137–144 (1994)

    Article  CAS  Google Scholar 

  46. S. Wang, J.F. Stebbins: On the structure of borosilicate glasses: A triple-quantum magic-angle spinning 17O nuclear magnetic resonance study, J. Non-Cryst. Solids 231(3), 286–290 (1998)

    Article  CAS  Google Scholar 

  47. H. Zhang, S. Koritala, K. Farooqui, R. Boekenhauer, D. Bain, S. Kambeyanda, S. Feller: A model for carbon dioxide retention in alkali borate and borosilicate systems, Phys. Chem. Glasses 32(5), 185–187 (1991)

    CAS  Google Scholar 

  48. S. Feller: Glass forming limits: A simple model based on short and intermediate range structural groups. In: Mater. Sci. Technol. Conf., Salt Lake City (2016)

    Google Scholar 

  49. E.I. Kamitsos, M.A. Karakassides, A.P. Patsis: Spectroscopic: Study of carbonate retention in high-basicity borate glasses, J. Non-Cryst. Solids 111(2/3), 252–262 (1989)

    Article  CAS  Google Scholar 

  50. T. Mullenbach, M. Franke, A. Ramm, A. Betzen, S. Kapoor, N. Lower, T. Munhollon, M. Berman, M. Affatigato, S.A. Feller: Structural determination of alkaline-earth borosilicate glasses through density modelling, Inelastic neutron scattering studies of superstructural units in borate glasses and crystalline phases, Phys. Chem. Glasses 50(2), 89–94 (2009)

    CAS  Google Scholar 

  51. Ohara Corp.: Ultra low expansion glass-ceramics (CLEARCERAM®-Z), http://www.oharacorp.com/ccz.html

  52. Wikipedia: Pyrex, https://en.wikipedia.org/wiki/Pyrex

  53. Richard F. Caris Mirror Lab: http://mirrorlab.as.arizona.edu/about/faq

  54. K. Grayson: Using fibrous borate bioactive glass in wound healing, Mo-Sci. Corp., http://www.mo-sci.com/borate-bioactive-glass-wound-healing (2017)

Download references

Acknowledgements

The National Science Foundation is thanked for its support of this research for over three decades. This chapter was written under grants DMR-1407404 and DMR-1746230. Several hundred students helped with this research and Coe College is gratefully acknowledged for much practical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Feller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Feller, S. (2019). Borate Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_14

Download citation

Publish with us

Policies and ethics