N. Andersson, Gravitational waves from instabilities in relativistic stars. Class. Quantum Grav. 20, R105–R144 (2003)
MathSciNet
CrossRef
Google Scholar
I.P. Andreichikov, V.I. Yudovich, The stability of visco-elastic rods. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela. 9(2), 78–87 (1974)
Google Scholar
S. Aoi, Y. Egi, K. Tsuchiya, Instability-based mechanism for body undulations in centipede locomotion. Phys. Rev. E 87, 012717 (2013)
CrossRef
Google Scholar
V.I. Arnold, Lectures on bifurcations in versal families. Russ. Math. Surv. 27, 54–123 (1972)
CrossRef
Google Scholar
G.L. Austin Sydes, Self-stable bicycles. Bsc (Hons) mathematics final year project report. (Northumbria University, Newcastle upon Tyne, UK, 2018)
Google Scholar
P.V. Bayly, S.K. Dutcher, Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. J. R. Soc. Interface 13, 20160523 (2016)
CrossRef
Google Scholar
M. Beck, Die Knicklast des einseitig eingespannten, tangential gedruckten Stabes. Z. angew. Math. Phys. 3, 225–228 (1952)
CrossRef
Google Scholar
V.V. Beletsky, Some stability problems in applied mechanics. Appl. Math. Comput. 70, 117–141 (1995)
MathSciNet
MATH
Google Scholar
M.V. Berry, P. Shukla, Curl force dynamics: symmetries, chaos and constants of motion. New J. Phys. 18, 063018 (2016)
CrossRef
Google Scholar
D. Bigoni, G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Sol. 59, 2208–2226 (2011)
CrossRef
Google Scholar
D. Bigoni, D. Misseroni, M. Tommasini, O.N. Kirillov, G. Noselli, Detecting singular weak-dissipation limit for flutter onset in reversible systems. Phys. Rev. E 97(2), 023003 (2018)
CrossRef
Google Scholar
A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, T.S. Ratiu, Dissipation induced instabilities. Annales de L’Institut Henri Poincare - Analyse Non Lineaire 11, 37–90 (1994)
MathSciNet
CrossRef
Google Scholar
V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability (Pergamon Press, Oxford, 1963)
MATH
Google Scholar
A.V. Borisov, A.A. Kilin, I.S. Mamaev, The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids. Reg. Chaotic Dyn. 14(2), 179–217 (2009)
MathSciNet
CrossRef
Google Scholar
O. Bottema, On the stability of the equilibrium of a linear mechanical system, ZAMP Z. Angew. Math. Phys. 6, 97–104 (1955)
MathSciNet
CrossRef
Google Scholar
O. Bottema, The Routh-Hurwitz condition for the biquadratic equation. Indag. Math. (Proc.) 59, 403–406 (1956)
MathSciNet
CrossRef
Google Scholar
R.M. Bulatovic, A sufficient condition for instability of equilibrium of nonconservative undamped systems. Phys. Lett. A 375, 3826–3828 (2011)
MathSciNet
CrossRef
Google Scholar
R.M. Bulatovic, A stability criterion for circulatory systems. Acta Mech. 228(7), 2713–2718 (2017)
MathSciNet
CrossRef
Google Scholar
S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale University Press, New Haven, 1969)
MATH
Google Scholar
S. Chandrasekhar, Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 24(11), 611–615 (1970)
CrossRef
Google Scholar
S. Chandrasekhar, On stars, their evolution and their stability. Science 226(4674), 497–505 (1984)
CrossRef
Google Scholar
G. De Canio, E. Lauga, R.E. Goldstein, Spontaneous oscillations of elastic filaments induced by molecular motors. J. R. Soc. Interface 14, 20170491 (2017)
CrossRef
Google Scholar
P. Gallina, About the stability of non-conservative undamped systems. J. Sound Vibr. 262, 977–988 (2003)
MathSciNet
CrossRef
Google Scholar
V.L. Ginzburg, V.N. Tsytovich, Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49(1), 1–89 (1979)
CrossRef
Google Scholar
G. Gladwell, Follower forces - Leipholz early researches in elastic stability. Can. J. Civil Eng. 17, 277–286 (1990)
CrossRef
Google Scholar
A.G. Greenhill, On the rotation required for the stability of an elongated projectile. Min. Proc. R. Artill. Inst. X(7), 577–593 (1879)
Google Scholar
A.G. Greenhill, On the general motion of a liquid ellipsoid under the gravitation of its own parts. Proc. Camb. Philos. Soc. 4, 4–14 (1880)
MATH
Google Scholar
A.G. Greenhill, Determination of the greatest height consistent with stability that a vertical pole or must can be made, and of the greatest height to which a tree of given proportions can grow. Proc. Camb. Philos. Soc. 4, 65–73 (1881)
MATH
Google Scholar
A.G. Greenhill, On the strength of shafting when exposed both to torsion and to end thrust. Proc. Inst. Mech. Eng. 34, 182–225 (1883)
CrossRef
Google Scholar
P. Hagedorn, E. Heffel, P. Lancaster, P.C. Müller, S. Kapuria, Some recent results on MDGKN-systems. ZAMM - Z. Angew. Math. Mech. 95(7), 695–702 (2014)
MathSciNet
CrossRef
Google Scholar
P.L. Kapitsa, Stability and passage through the critical speed of the fast spinning rotors in the presence of damping. Z. Tech. Phys. 9, 124–147 (1939)
Google Scholar
M.A. Karami, D.J. Inman, Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vibr. 330, 5583–5597 (2011)
CrossRef
Google Scholar
A.L. Kimball, Internal friction as a cause of shaft whirling. Phil. Mag. 49, 724–727 (1925)
CrossRef
Google Scholar
O.N. Kirillov, Gyroscopic stabilization in the presence of nonconservative forces. Doklady Math. 76(2), 780–785 (2007)
MathSciNet
CrossRef
Google Scholar
O.N. Kirillov, Campbell diagrams of weakly anisotropic flexible rotors. Proc. R. Soc. A 465(2109), 2703–2723 (2009)
MathSciNet
CrossRef
Google Scholar
O.N. Kirillov, Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices. ZAMP - Z. Angew. Math. Phys. 61, 221–234 (2010)
MathSciNet
CrossRef
Google Scholar
O.N. Kirillov, Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications. Int. J. Vehicle Struct. Syst. 3(1), 1–13 (2011a)
Google Scholar
O.N. Kirillov, Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics. Phys. Lett. A 375, 1653–1660 (2011b)
CrossRef
Google Scholar
O.N. Kirillov, Nonconservative Stability Problems of Modern Physics (De Gruyter, Berlin, 2013a)
Google Scholar
O.N. Kirillov, Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems. Phil. Trans. R. Soc. A 371, 20120051 (2013b)
MathSciNet
CrossRef
Google Scholar
O.N. Kirillov, Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics. Proc. R. Soc. A 473(2205), 20170344 (2017)
MathSciNet
CrossRef
Google Scholar
O.N. Kirillov, A.P. Seyranian, Metamorphoses of characteristic curves in circulatory systems. J. Appl. Math. Mech. 66, 371–385 (2002a)
MathSciNet
CrossRef
Google Scholar
O.N. Kirillov, A.P. Seyranian, A nonsmooth optimization problem. Moscow Univ. Mech. Bull. 57, 1–6 (2002b)
MATH
Google Scholar
O.N. Kirillov, F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? ZAMM - Z. Angew. Math. Mech. 90(6), 462–488 (2010)
MathSciNet
CrossRef
Google Scholar
W. Kliem, C. Pommer, A note on circulatory systems: old and new results. Z. Angew. Math. Mech. 97, 92–97 (2017)
MathSciNet
CrossRef
Google Scholar
J.D.G. Kooijman, J.P. Meijaard, J.M. Papadopoulos, A. Ruina, A.L. Schwab, A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011)
MathSciNet
CrossRef
Google Scholar
N.D. Kopachevskii, S.G. Krein, Operator Approach in Linear Problems of Hydrodynamics. Self-adjoint Problems for an Ideal Fluid, Operator Theory: Advances and Applications, vol. 1 (Birkhauser, Basel, 2001)
Google Scholar
R. Krechetnikov, J.E. Marsden, Dissipation-induced instabilities in finite dimensions. Rev. Mod. Phys. 79, 519–553 (2007)
MathSciNet
CrossRef
Google Scholar
V. Lakhadanov, On stabilization of potential systems, Prikl. Mat. Mekh. 39, 53–58 (1975)
MathSciNet
CrossRef
Google Scholar
J.S.W. Lamb, J.A.G. Roberts, Time-reversal symmetry in dynamical systems: a survey. Phys. D 112, 1–39 (1998)
MathSciNet
CrossRef
Google Scholar
W.F. Langford, Hopf meets Hamilton under Whitney’s umbrella, in IUTAM Symposium on Nonlinear Stochastic Dynamics. Proceedings of the IUTAM Symposium, Monticello, IL, USA, Augsut 26–30, 2002, Solid Mech. Appl., vol. 110, ed. S.N. Namachchivaya, pp. 157–165 (Kluwer, Dordrecht, 2003)
Google Scholar
N.R. Lebovitz, Binary fission via inviscid trajectories. Geoph. Astroph. Fluid. Dyn. 38(1), 15–24 (1987)
CrossRef
Google Scholar
N.R. Lebovitz, The mathematical development of the classical ellipsoids. Int. J. Eng. Sci. 36(12), 1407–1420 (1998)
MathSciNet
CrossRef
Google Scholar
H. Leipholz, Stability Theory: an Introduction to the Stability of Dynamic Systems and Rigid Bodies, 2nd edn. (Teubner, Stuttgart, 1987)
CrossRef
Google Scholar
L. Lindblom, S.L. Detweiler, On the secular instabilities of the Maclaurin spheroids. Astrophys. J. 211, 565–567 (1977)
CrossRef
Google Scholar
A. Luongo, M. Ferretti, Postcritical behavior of a discrete Nicolai column. Nonlin. Dyn. 86, 2231–2243 (2016)
MathSciNet
CrossRef
Google Scholar
A. Luongo, M. Ferretti, F. D’Annibale, Paradoxes in dynamic stability of mechanical systems: investigating the causes and detecting the nonlinear behaviors. Springer Plus 5, 60 (2016)
CrossRef
Google Scholar
A.M. Lyapunov, The general problem of the stability of motion (translated into English by A. T. Fuller). Int. J. Control 55, 531–773 (1992)
CrossRef
Google Scholar
R.S. MacKay, Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett. A 155, 266–268 (1991)
MathSciNet
CrossRef
Google Scholar
O. Mahrenholtz, R. Bogacz, On the shape of characteristic curves for optimal structures under non-conservative loads. Arch. Appl. Mech. 50, 141–148 (1981)
MATH
Google Scholar
S. Mandre, L. Mahadevan, A generalized theory of viscous and inviscid flutter. Proc. R. Soc. Lond. A 466, 141–156 (2010)
MathSciNet
CrossRef
Google Scholar
D.R. Merkin, Gyroscopic Systems (Gostekhizdat, Moscow, 1956) [in Russian]
Google Scholar
N.N. Moiseyev, V.V. Rumyantsev, Dynamic Stability of Bodies Containing Fluid (Springer, New York, 1968)
CrossRef
Google Scholar
M.V. Nezlin, Negative-energy waves and the anomalous Doppler effect. Sov. Phys. Uspekhi 19, 946–954 (1976)
CrossRef
Google Scholar
E.L. Nicolai, On the stability of the rectilinear form of equilibrium of a bar in compression and torsion. Izvestia Leningradskogo Politechnicheskogo Instituta 31, 201–231 (1928)
Google Scholar
E.L. Nicolai, On the problem of the stability of a bar in torsion. Vestnik Mechaniki i Prikladnoi Matematiki 1, 41–58 (1929)
Google Scholar
O.M. O’Reilly, N.K. Malhotra, N.S. Namachchivaya, Reversible dynamical systems - dissipation-induced destabilization and follower forces. Appl. Math. Comput. 70, 273–282 (1995)
MathSciNet
MATH
Google Scholar
O.M. O’Reilly, N.K. Malhotra, N.S. Namachchivaya, Some aspects of destabilization in reversible dynamical systems with application to follower forces. Nonlinear Dyn. 10, 63–87 (1996)
MathSciNet
CrossRef
Google Scholar
L.A. Ostrovskii, S.A. Rybak, L.S. Tsimring, Negative energy waves in hydrodynamics. Sov. Phys. Usp. 29, 1040–1052 (1986)
CrossRef
Google Scholar
M.P. Païdoussis, Fluid-Structure Interactions, 2nd edn. (Academic Press, Oxford, 2016)
Google Scholar
D. Phillips, S. Simpson, S. Hanna, Chapter 3 - optomechanical microtools and shape-induced forces, in Light Robotics: Structure-Mediated Nanobiophotonics, ed. by J. Glückstad, D. Palima (Elsevier, Amsterdam, 2017), pp. 65–98
CrossRef
Google Scholar
L. Pigolotti, C. Mannini, G. Bartoli, Destabilizing effect of damping on the post-critical flutter oscillations of flat plates. Meccanica 52(13), 3149–3164 (2017)
MathSciNet
CrossRef
Google Scholar
S.M. Ramodanov, V.V. Sidorenko, Dynamics of a rigid body with an ellipsoidal cavity filled with viscous fluid. Int. J. Non-Lin. Mech. 95, 42–46 (2017)
CrossRef
Google Scholar
P.H. Roberts, K. Stewartson, On the stability of a Maclaurin spheroid with small viscosity. Astrophys. J. 139, 777–790 (1963)
CrossRef
Google Scholar
A. Rohlmann, T. Zander, M. Rao, G. Bergmann, Applying a follower load delivers realistic results for simulating standing. J. Biomech. 42, 1520–1526 (2009)
CrossRef
Google Scholar
S. Ryu, Y. Sugiyama, Computational dynamics approach to the effect of damping on stability of a cantilevered column subjected to a follower force. Comput. Struct. 81, 265–271 (2003)
CrossRef
Google Scholar
S.S. Saw, W.G. Wood, The stability of a damped elastic system with a follower force. J. Mech. Eng. Sci. 17(3), 163–176 (1975)
CrossRef
Google Scholar
J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101(R) (2011)
CrossRef
Google Scholar
A.P. Seyranian, A.A. Mailybaev, Paradox of Nicolai and related effects. Z. angew. Math. Phys. 62, 539–548 (2011)
MathSciNet
CrossRef
Google Scholar
R.C. Shieh, E.F. Masur, Some general principles of dynamic instability of solid bodies. Z. Angew. Math. Phys. 19, 927–941 (1968)
CrossRef
Google Scholar
S.H. Simpson, S. Hanna, First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E. 82, 031141 (2010)
CrossRef
Google Scholar
D.M. Smith, The motion of a rotor carried by a flexible shaft in flexible bearings. Proc. R. Soc. Lond. A 142, 92–118 (1933)
CrossRef
Google Scholar
K. Stewartson, On the stability of a spinning top containing liquid. J. Fluid Mech. 5, 577–592 (1959)
MathSciNet
CrossRef
Google Scholar
Y. Sugiyama, K. Kashima, H. Kawagoe, On an unduly simplified model in the non-conservative problems of elastic stability. J. Sound Vib. 45(2), 237–247 (1976)
CrossRef
Google Scholar
S. Sukhov, A. Dogariu, Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017)
MathSciNet
CrossRef
Google Scholar
T. Theodorsen, General theory of aerodynamic instability and the mechanism of flutter. Technical Report no. 496. National Advisory Commitee for Aeronautics (NACA) (1935)
Google Scholar
W. Thomson, On an experimental illustration of minimum energy. Nature 23, 69–70 (1880)
CrossRef
Google Scholar
W. Thomson, P.G. Tait, Treatise on Natural Philosophy (Cambridge University Press, Cambridge, 1879)
MATH
Google Scholar
M. Tommasini, O.N. Kirillov, D. Misseroni, D. Bigoni, The destabilizing effect of external damping: singular flutter boundary for the Pflüger column with vanishing external dissipation. J. Mech. Phys. Sol. 91, 204–215 (2016)
CrossRef
Google Scholar
F.E. Udwadia, Stability of dynamical systems with circulatory forces: generalization of the Merkin theorem. AIAA J. 55(9), 2853–2858 (2017)
CrossRef
Google Scholar
A.I. Vesnitskii, A.V. Metrikin, Transition radiation in mechanics. Phys.-Uspekhi 39(10), 983–1007 (1996)
CrossRef
Google Scholar
P. Wu, R. Huang, C. Tischer, A. Jonas, E.-L. Florin, Direct measurement of the nonconservative force field generated by optical tweezers. Phys. Rev. Lett. 103, 108101 (2009)
CrossRef
Google Scholar
V.A. Yakubovich, V.M. Starzinskii, Linear Differential Equations with Periodic Coefficients, vols. 1 and 2 (Wiley, New York, 1975)
Google Scholar
R. Zhang, H. Qin, R.C. Davidson, J. Liu, J. Xiao, On the structure of the two-stream instability-complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes. Physics of Plasmas 23, 072111 (2016)
CrossRef
Google Scholar
V.F. Zhuravlev, Decomposition of nonlinear generalized forces into potential and circulatory components. Doklady Phys. 52, 339–341 (2007)
CrossRef
Google Scholar
V.F. Zhuravlev, Analysis of the structure of generalized forces in the Lagrange equations. Mech. Solids 43, 837–842 (2008)
CrossRef
Google Scholar
H. Ziegler, Stabilitätsprobleme bei geraden Stäben und Wellen. Z. angew. Math. Phys. 2, 265–289 (1951a)
MathSciNet
CrossRef
Google Scholar
H. Ziegler, Ein nichtkonservatives Stabilitätsproblem. Z. angew. Math. Math. 8(9), 265–266 (1951b)
Google Scholar
H. Ziegler, Die Stabilitätskriterien der Elastomechanik. Arch. Appl. Mech. 20, 49–56 (1952)
Google Scholar
H. Ziegler, Linear elastic stability. A critical analysis of methods. First part. ZAMP Z. angew. Math. Phys. 4, 89–121 (1953a)
CrossRef
Google Scholar
H. Ziegler, Linear elastic stability. A critical analysis of methods, Second part. ZAMP Z. angew. Math. Phys. 4, 167–185 (1953b)
CrossRef
Google Scholar
H. Ziegler, On the concept of elastic stability. Adv. Appl. Mech. 4, 351–403 (1956)
Google Scholar
V.I. Zubov, Canonical structure of the vector force field, in Problems of Mechanics of Deformable Solid Bodies – Special issue dedicated to the 60th Birthday of Acad. V. V. Novozhilov (Sudostroenie, Leningrad, 1970), pp. 167–170. [in Russian]
Google Scholar
O.N. Kirillov, Localizing EP sets in dissipative systems and the self-stability of bicycles. arXiv:1806.03741 (2018)