Novel Monte Carlo Algorithm for Solving Singular Linear Systems

  • Behrouz Fathi VajargahEmail author
  • Vassil Alexandrov
  • Samaneh Javadi
  • Ali Hadian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10862)


A new Monte Carlo algorithm for solving singular linear systems of equations is introduced. In fact, we consider the convergence of resolvent operator \(R_{\lambda }\) and we construct an algorithm based on the mapping of the spectral parameter \(\lambda \). The approach is applied to systems with singular matrices. For such matrices we show that fairly high accuracy can be obtained.


Monte Carlo Markov chain Resolvent operator 


  1. 1.
    Dimov, I.T.: Monte Carlo Methods for Applide Scientists. World Scientific Publishing, Singapore (2008)zbMATHGoogle Scholar
  2. 2.
    Dimov, I., Alexandrov, V.: A new highly convergent Monte Carlo method for matrix computations. Mathe. Comput. Simul. 47, 165–181 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dimov, I., Alexandrov, V., Karaivanova, A.: Parallel resolvent Monte Carlo algorithms for linear algebra problems. Monte Carlo Method Appl. 4, 33–52 (1998)CrossRefGoogle Scholar
  4. 4.
    Dimov, I.T., Karaivanova, A.N.: Iterative monte carlo algorithms for linear algebra problems. In: Vulkov, L., Waśniewski, J., Yalamov, P. (eds.) WNAA 1996. LNCS, vol. 1196, pp. 150–160. Springer, Heidelberg (1997). Scholar
  5. 5.
    Dimov, I.T., Philippe, B., Karaivanova, A., Weihrauch, C.: Robustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems. Appl. Math. Model. 32, 1511–1529 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)zbMATHGoogle Scholar
  7. 7.
    Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)CrossRefGoogle Scholar
  8. 8.
    Rudin, W.: Functional Analysis. McGraw Hill, New York (1991)zbMATHGoogle Scholar
  9. 9.
    Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Sabelfeld, K., Loshchina, N.: Stochastic iterative projection methods for large linear systems. Monte Carlo Methods Appl. 16, 1–16 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Behrouz Fathi Vajargah
    • 1
    Email author
  • Vassil Alexandrov
    • 2
  • Samaneh Javadi
    • 3
  • Ali Hadian
    • 4
  1. 1.Department of StatisticsUniversity of GuilanRashtIran
  2. 2.ICREA-Barcelona Supercomputing CentreBarcelonaSpain
  3. 3.Faculty of Technology and Engineering, East of GuilanUniversity of GuilanRoudsarIran
  4. 4.Department of MathematicsUniversity of GuilanRashtIran

Personalised recommendations