A Novel Agent-Based Modeling Approach for Image Coding and Lossless Compression Based on the Wolf-Sheep Predation Model

  • Khaldoon Dhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)


In this article, the researcher develops an image coding technique which is based on the wolf-sheep predation model. In the design, images are converted to virtual worlds of sheep, routes and wolves. Wolves in this model wander around searching for sheep while the algorithm tracks their movement. A wolf has seven movements which capture all the directions of the wolf. In addition, the researcher introduces one extra move of the wolf the purpose of which is to provide a shorter string of movements and to enhance the compression ratio. The first coordinates and the movements of the wolf are tracked and recorded. Then, arithmetic coding is applied on the string of movements to further compress it. The algorithm was applied on a set of images and the results were compared with other algorithms in the research community. The experimental results reveal that the size of the compressed string of wolf movements offer a higher reduction in space and the compression ratio is higher than those of many existing compression algorithms including G3, G4, JBIG1, JBIG2 and the recent agent-based model of ant colonies.


Agent-based modeling Wolf-sheep predation model Binary image coding Compression Arithmetic coding 


  1. 1.
    Anandan, P., Sabeenian, R., et al.: Medical image compression using wrapping based fast discrete curvelet transform and arithmetic coding. Circ. Syst. 7(08), 2059 (2016)CrossRefGoogle Scholar
  2. 2.
    Bausch, A.W.: The geography of ethnocentrism. J. Conflict Resolut. 59(3), 510–527 (2015)CrossRefGoogle Scholar
  3. 3.
    Carbo, J., Sanchez-Pi, N., Molina, J.: Agent-based simulation with NetLogo to evaluate ambient intelligence scenarios. J. Simul. 12(1), 42–52 (2018)CrossRefGoogle Scholar
  4. 4.
    Decker, R.S., Shademan, A., Opfermann, J.D., Leonard, S., Kim, P.C., Krieger, A.: Biocompatible near-infrared three-dimensional tracking system. IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017)Google Scholar
  5. 5.
    Fachada, N., Lopes, V.V., Martins, R.C., Rosa, A.C.: Towards a standard model for research in agent-based modeling and simulation. PeerJ Comput. Sci. 1, e36 (2015)CrossRefGoogle Scholar
  6. 6.
    Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 2, 260–268 (1961)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Freeman, H.: Computer processing of line-drawing images. ACM Comput. Surv. (CSUR) 6(1), 57–97 (1974)CrossRefGoogle Scholar
  8. 8.
    Ginovart, M.: Discovering the power of individual-based modelling in teaching and learning: the study of a predator-prey system. J. Sci. Educ. Technol. 23(4), 496–513 (2014)CrossRefGoogle Scholar
  9. 9.
    Grider, R., Wilensky, U.: NetLogo paths model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (2015).
  10. 10.
    Hampel, H., Arps, R.B., Chamzas, C., Dellert, D., Duttweiler, D.L., Endoh, T., Equitz, W., Ono, F., Pasco, R., Sebestyen, I., et al.: Technical features of the JBIG standard for progressive bi-level image compression. Sig. Process. Image Commun. 4(2), 103–111 (1992)CrossRefGoogle Scholar
  11. 11.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)CrossRefGoogle Scholar
  12. 12.
    JBIG1: Progressive bilevel image compression. International Standard 11544 (1993)Google Scholar
  13. 13.
    Kuhn, M.: JBIG-KIT. University of Cambridge (2017).
  14. 14.
    Kvassay, M., Krammer, P., Hluchỳ, L., Schneider, B.: Causal analysis of an agent-based model of human behaviour. Complexity 2017, 1–18 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liaghati, A.L., Shen, H., Pan, W.D.: An efficient method for lossless compression of bi-level ROI maps of hyperspectral images. In: Aerospace Conference, 2016 IEEE, pp. 1–6. IEEE (2016)Google Scholar
  16. 16.
    Liu, Y.K., Žalik, B.: An efficient chain code with huffman coding. Pattern Recogn. 38(4), 553–557 (2005)CrossRefGoogle Scholar
  17. 17.
    Martínez, L.A., Bribiesca, E., Guzmán, A.: Chain coding representation of voxel-based objects with enclosing, edging and intersecting trees. Pattern Anal. Appl. 20(3), 825–844 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Masmoudi, A., Masmoudi, A.: A new arithmetic coding model for a block-based lossless image compression based on exploiting inter-block correlation. SIViP 9(5), 1021–1027 (2015)CrossRefGoogle Scholar
  19. 19.
    Minami, T., Shinohara, K.: Encoding of line drawings with a multiple grid chain code. IEEE Trans. Pattern Anal. Mach. Intell. 2, 269–276 (1986)CrossRefGoogle Scholar
  20. 20.
    Mouring, M., Dhou, K., Hadzikadic, M.: A novel algorithm for bi-level image coding and lossless compression based on virtual ant colonies. In: 3rd International Conference on Complexity, Future Information Systems and Risk, pp. 72–78. Setúbal - Portugal (2018)Google Scholar
  21. 21.
    Ngan, P.T.H., Hochin, T., Nomiya, H.: Similarity measure of human body movement through 3D chaincode. In: 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 607–614. IEEE (2017)Google Scholar
  22. 22.
    Ono, F., Rucklidge, W., Arps, R., Constantinescu, C.: JBIG2 - the ultimate bi-level image coding standard. In: ICIP, pp. 140–143 (2000).
  23. 23.
    Ono, F., Rucklidge, W., Arps, R., Constantinescu, C.: JBIG2-the ultimate bi-level image coding standard. In: 2000 International Conference on Image Processing, Proceedings, vol. 1, pp. 140–143. IEEE (2000)Google Scholar
  24. 24.
    Pan, J., Hu, Z., Su, Z., Yang, M.H.: \( l_0 \)-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 342–355 (2017)CrossRefGoogle Scholar
  25. 25.
    Priyadarshini, S., Sahoo, G.: A new lossless chain code compression scheme based on substitution. Int. J. Signal Imaging Syst. Eng. 4(1), 50–56 (2011)CrossRefGoogle Scholar
  26. 26.
    Sayood, K.: Introduction to Data Compression. Newnes, Boston (2012)zbMATHGoogle Scholar
  27. 27.
    Shahriyar, S., Murshed, M., Ali, M., Paul, M.: Lossless depth map coding using binary tree based decomposition and context-based arithmetic coding. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2016)Google Scholar
  28. 28.
    Tompkins, D.A., Kossentini, F.: A fast segmentation algorithm for bi-level image compression using JBIG2. In: 1999 International Conference on Image Processing, ICIP 1999, Proceedings, vol. 1, pp. 224–228. IEEE (1999)Google Scholar
  29. 29.
    Wilensky, U.: Ants model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1997).
  30. 30.
    Wilensky, U.: NetLogo wolf sheep predation model. Center for connected learning and computer-based modeling, Northwestern University, Evanston (1997).
  31. 31.
    Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999).
  32. 32.
    Wilensky, U.: NetLogo ethnocentrism model. Northwestern University, Evanston, Center for Connected Learning and Computer-based Modeling (2003)Google Scholar
  33. 33.
    Wilensky, U., Reisman, K.: Thinking like a wolf, a sheep, or a firefly: learning biology through constructing and testing computational theories—an embodied modeling approach. Cogn. Instr. 24(2), 171–209 (2006)CrossRefGoogle Scholar
  34. 34.
    Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)CrossRefGoogle Scholar
  35. 35.
    Xie, X., Zhou, S., Guan, J.: CoGI: towards compressing genomes as an image. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(6), 1275–1285 (2015)CrossRefGoogle Scholar
  36. 36.
    Yeh, M.C., Huang, Y.L., Wang, J.S.: Scalable ideal-segmented chain coding. In: 2002 International Conference on Image Processing, Proceedings, vol. 1, pp. I–197. IEEE (2002)Google Scholar
  37. 37.
    Zahir, S., Dhou, K.: A new chain coding based method for binary image compression and reconstruction. In: Picture Coding Symposium, pp. 1321–1324 (2007)Google Scholar
  38. 38.
    Zhao, X., Zheng, J., Liu, Y.: A new algorithm of shape boundaries based on chain coding. In: ITM Web of Conferences, vol. 12, p. 03005. EDP Sciences (2017)CrossRefGoogle Scholar
  39. 39.
    Zhou, L.: A new highly efficient algorithm for lossless binary image compression. ProQuest (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Missouri – St. LouisSt. LouisUSA

Personalised recommendations