Advertisement

The Solution of the Lambda Modes Problem Using Block Iterative Eigensolvers

  • A. Carreño
  • A. Vidal-Ferràndiz
  • D. Ginestar
  • G. Verdú
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

High efficient methods are required for the computation of several lambda modes associated with the neutron diffusion equation. Multiple iterative eigenvalue solvers have been used to solve this problem. In this work, three different block methods are studied to solve this problem. The first method is a procedure based on the modified block Newton method. The second one is a procedure based on subspace iteration and accelerated with Chebyshev polynomials. Finally, a block inverse-free Krylov subspace method is analyzed with different preconditioners. Two benchmark problems are studied illustrating the convergence properties and the effectiveness of the methods proposed.

Keywords

Neutron diffusion equation Eigenvalue problem Lambda modes Block method 

Notes

Acknowledgements

This work has been partially supported by Spanish Ministerio de Economía y Competitividad under projects ENE2017-89029-P, MTM2017-85669-P and BES-2015-072901.

References

  1. 1.
    Balay, S., Abhyankar, S., Adams, M., Brune, P., Buschelman, K., Dalcin, L., Gropp, W., Smith, B., Karpeyev, D., Kaushik, D., et al.: PETSc users manual revision 3.7. Technical report, Argonne National Lab (ANL), Argonne, IL, USA (2016)Google Scholar
  2. 2.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II - a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carreño, A., Vidal-Ferrandiz, A., Ginestar, D., Verdú, G.: Multilevel method to compute the lambda modes of the neutron diffusion equation. Appl. Math. Nonlinear Sci. 2(1), 225–236 (2017)CrossRefGoogle Scholar
  4. 4.
    Carreño, A., Vidal-Ferrandiz, A., Ginestar, D., Verdú, G.: Spatial modes for the neutron diffusion equation and their computation. Ann. Nucl. Energy 110(Supplement C), 1010–1022 (2017)CrossRefGoogle Scholar
  5. 5.
    Di Napoli, E., Berljafa, M.: Block iterative eigensolvers for sequences of correlated eigenvalue problems. Comput. Phys. Commun. 184(11), 2478–2488 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Finnemann, H., Galati, A.: NEACRP 3-D LWR core transient benchmark, final specification (1991)Google Scholar
  7. 7.
    Golub, G., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Comput. 24(1), 312–334 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Henry, A.F.: Nuclear Reactor Analysis, vol. 4. MIT press, Cambridge (1975)Google Scholar
  9. 9.
    Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lösche, R., Schwetlick, R., Timmermann, G.: A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix. Linear Algebra Appl. 275, 381–400 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Quillen, P., Ye, Q.: A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. J. Comput. Appl. Math. 233(5), 1298–1313 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia (1992)MATHGoogle Scholar
  13. 13.
    American Nuclear Society: Argonne Code Center: Benchmark Problem Book. Technical report, ANL-7416, June 1977Google Scholar
  14. 14.
    Stacey, W.M.: Nuclear Reactor Physics. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  15. 15.
    Verdú, G., Ginestar, D., Miró, R., Vidal, V.: Using the Jacobi-Davidson method to obtain the dominant Lambda modes of a nuclear power reactor. Ann. Nucl. Energy 32(11), 1274–1296 (2005)CrossRefGoogle Scholar
  16. 16.
    Verdú, G., Miró, R., Ginestar, D., Vidal, V.: The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Ann. Nucl. Energy 26(7), 579–593 (1999)CrossRefGoogle Scholar
  17. 17.
    Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., Verdú, G.: Solution of the lambda modes problem of a nuclear power reactor using an h-p finite element method. Ann. Nucl. Energy 72, 338–349 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-consistent-field calculations using Chebyshev-filtered subspace iteration. J. Comput. Phys. 219(1), 172–184 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. Carreño
    • 1
  • A. Vidal-Ferràndiz
    • 1
  • D. Ginestar
    • 2
  • G. Verdú
    • 1
  1. 1.Instituto Universitario de Seguridad Industrial, Radiofísica y MedioambientalUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Instituto Universitario de Matemática MultidisciplinarUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations