Bisections-Weighted-by-Element-Size-and-Order Algorithm to Optimize Direct Solver Performance on 3D hp-adaptive Grids

  • H. AbouEisha
  • V. M. Calo
  • K. Jopek
  • M. Moshkov
  • A. Paszyńska
  • M. Paszyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

The hp-adaptive Finite Element Method (hp-FEM) generates a sequence of adaptive grids with different polynomial orders of approximation and element sizes. The hp-FEM delivers exponential convergence of the numerical error with respect to the mesh size. In this paper, we propose a heuristic algorithm to construct element partition trees. The trees can be transformed directly into the orderings, which control the execution of the multi-frontal direct solvers during the hp refined finite element method. In particular, the orderings determine the number of floating point operations performed by the solver. Thus, the quality of the orderings obtained from the element partition trees is important for good performance of the solver. Our heuristic algorithm has been implemented in 3D and tested on a sequence of hp-refined meshes. We compare the quality of the orderings found by the heuristic algorithm to those generated by alternative state-of-the-art algorithms. We show 50% reduction in flops number and execution time.

Keywords

hp adaptive finite element method Ordering Nested-dissections Multi-frontal direct solvers Heuristic algorithms 

References

  1. 1.
    AbouEisha, H., Calo, V.M., Jopek, K., Moshkov, M., Paszyńska, A., Paszyński, M., Skotniczny, M.: Element partition trees for two- and three-dimensional \(h\)-refined meshes and their use to optimize direct solver performance. Dyn. Program. Int. J. Appl. Math. Comput. Sci. (2017, accepted)Google Scholar
  2. 2.
    Amestoy, P.R., Duff, I.S.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000).  https://doi.org/10.1016/S0045-7825(99)00242-XCrossRefMATHGoogle Scholar
  3. 3.
    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 1(23), 15–41 (2001).  https://doi.org/10.1137/S0895479899358194MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Comput. Methods Appl. Mech. Eng. 2(32), 136–156 (2011).  https://doi.org/10.1016/j.parco.2005.07.004CrossRefGoogle Scholar
  5. 5.
    Amestoy, P.R., Davis, T.A., Du, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996).  https://doi.org/10.1137/S0895479894278952MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Babuśka, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Num. Anal. 15, 736–754 (1978).  https://doi.org/10.1137/0715049MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Babuska, I., Guo, B.Q.: The \(h\), \(p\) and \(hp\) version of the finite element method: basis theory and applications. Adv. Eng. Softw. 15(3–4), 159–174 (1992).  https://doi.org/10.1016/0965-9978(92)90097-YCrossRefMATHGoogle Scholar
  8. 8.
    Becker, R., Kapp, J., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000).  https://doi.org/10.1137/S0363012999351097MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with \(hp\) Adaptive Finite Element Method. Part II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. Chapmann & Hall, CRC Press, Boca Raton, London, New York (2007)Google Scholar
  10. 10.
    Demkowicz, L., Pardo, D., Rachowicz, W.: Fully automatic \(hp\)-adaptivity in three-dimensions. Comput. Methods Appl. Mech. Eng. 196(37–40), 4816–4842 (2006).  https://doi.org/10.1023/A:1015192312705MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press Inc., New York (1986)MATHGoogle Scholar
  12. 12.
    Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. 9(3), 302–325 (1983).  https://doi.org/10.1145/356044.356047MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Duff, I.S., Reid, K.: The multifrontal solution of unsymmetric sets of linear systems. SIAM J. Sci. Comput. 5, 633–641 (1984).  https://doi.org/10.1137/0905045CrossRefMATHGoogle Scholar
  14. 14.
    Fiałko, S.: A block sparse shared-memory multifrontal finite element solver for problems of structural mechanics. Comput. Assist. Mech. Eng. Sci. 16, 117–131 (2009)Google Scholar
  15. 15.
    Fiałko, S.: The block subtracture multifrontal method for solution of large finite element equation sets. Tech. Trans. 1-NP 8, 175–188 (2009)Google Scholar
  16. 16.
    Fiałko, S.: PARFES: a method for solving finite element linear equations on multi-core computers. Adv. Eng. Softw. 40(12), 1256–1265 (2010).  https://doi.org/10.1016/j.advengsoft.2010.09.002CrossRefMATHGoogle Scholar
  17. 17.
    George, A.: An automatic nested dissection algorithm for irregular finite element problems. SIAM J. Num. Anal. 15, 1053–1069 (1978).  https://doi.org/10.1137/0715069MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gilbert, J.R., Tarjan, R.E.: The analysis of a nested dissection algorithm. Numer. Math. 50(4), 377–404 (1986/87).  https://doi.org/10.1007/BF01396660
  19. 19.
    Hughes, T.J.R.: The Finite Element Method. Linear Statics and Dynamics Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)Google Scholar
  20. 20.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998).  https://doi.org/10.1137/S1064827595287997MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Melenk, J.M.: \(hp\)-Finite Element Methods for Singular Perturbations. Springer, Heidelberg (2002).  https://doi.org/10.1007/b84212CrossRefMATHGoogle Scholar
  22. 22.
    Niemi, A., Babuśka, I., Pitkaranta, J., Demkowicz, L.: Finite element analysis of the Girkmann problem using the modern \(hp\)-version and the classical \(h\)-version. Eng. Comput. 28, 123–134 (2012).  https://doi.org/10.1007/s00366-011-0223-0CrossRefGoogle Scholar
  23. 23.
    Paszyńska, A.: Volume and neighbors algorithm for finding elimination trees for three dimensional \(h\)-adaptive grids. Comput. Math. Appl. 68(10), 1467–1478 (2014).  https://doi.org/10.1016/j.camwa.2014.09.012MathSciNetCrossRefGoogle Scholar
  24. 24.
    Paszyńska, A., Paszyński, M., Jopek, K., Woźniak, M., Goik, D., Gurgul, P., AbouEisha, H., Moshkov, M., Calo, V.M., Lenharth, A., Nguyen, D., Pingali, K.: Quasi-optimal elimination trees for 2D grids with singularities. Sci. Program. 2015, 1–18, Article ID 303024 (2015).  https://doi.org/10.1155/2015/303024CrossRefGoogle Scholar
  25. 25.
    Paszyński, M.: Fast Solvers for Mesh-Based Computations. Taylor and Francis/CRC Press, Boca Raton, London, New York (2016)MATHGoogle Scholar
  26. 26.
    Schwab, C.: \(p\) and \(hp\) Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)MATHGoogle Scholar
  27. 27.
    Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. Chapman & Hall/CRC Press, Boca Raton, London, New York (2003)Google Scholar
  28. 28.
    Szymczak, A., Paszyńska, A., Paszyński, M., Pardo, D.: Preventing deadlock during anisotropic 2D mesh adaptation in hp-adaptive FEM. J. Comput. Sci. 4(3), 170–179 (2013).  https://doi.org/10.1016/j.jocs.2011.09.001CrossRefGoogle Scholar
  29. 29.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discret. Methods 2, 77–79 (1981).  https://doi.org/10.1137/0602010MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. AbouEisha
    • 1
  • V. M. Calo
    • 2
    • 3
    • 4
  • K. Jopek
    • 5
  • M. Moshkov
    • 1
  • A. Paszyńska
    • 6
  • M. Paszyński
    • 5
  1. 1.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Chair in Computational Geoscience, Applied Geology Department, Western Australian School of Mines, Faculty of Science and EngineeringCurtin UniversityPerthAustralia
  3. 3.Mineral ResourcesCommonwealth Scientific and Industrial Research Organization (CSIRO)KensingtonAustralia
  4. 4.Curtin Institute for ComputationCurtin UniversityPerthAustralia
  5. 5.Faculty of Computer Science, Electronics and TelecommunicationsAGH University of Science and TechnologyKrakowPoland
  6. 6.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakowPoland

Personalised recommendations