Advertisement

Efficient and Accurate Evaluation of Bézier Tensor Product Surfaces

  • Jing Lan
  • Hao Jiang
  • Peibing Du
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

This article proposes a bivariate compensated Volk and Schumaker (CompVSTP) algorithm, which extends the compensated Volk and Schumaker (CompVS) algorithm, to evaluate Bèzier tensor product surfaces with floating-point coefficients and coordinates. The CompVSTP algorithm is obtained by applying error-free transformations to improve the traditional Volk and Schumaker tensor product (VSTP) algorithm. We study in detail the forward error analysis of the VSTP, CompVS and CompVSTP algorithms. Our numerical experiments illustrate that the Comp-VSTP algorithm is much more accurate than the VSTP algorithm, relegating the influence of the condition numbers up to second order in the rounding unit of the computer.

Keywords

Bézier tensor product surfaces Volk and Schumaker algorithm Compensated algorithm Error-free transformation Round-off error 

References

  1. 1.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 4th edn. Academic Press Inc., SanDiego (1997)zbMATHGoogle Scholar
  2. 2.
    Mainar, E., Peña, J.: Error analysis of corner cutting algorithms. Numer. Algorithms 22(1), 41–52 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barrio, R.: A unified rounding error bound for polynomial evaluation. Adv. Comput. Math. 19(4), 385–399 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Schumaker, L., Volk, W.: Efficient evaluation of multivariate polynomials. Comput. Aided Geom. Des. 3, 149–154 (1986)CrossRefGoogle Scholar
  5. 5.
    Graillat, S., Langlois, P., Louvet, N.: Compensated Horner scheme. Technical report, University of Perpignan, France (2005)Google Scholar
  6. 6.
    Graillat, S., Langlois, P., Louvet, N.: Algorithms for accurate, validated and fast polynomial evaluation. Jpn. J. Ind. Appl. Math. 26, 191–214 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Langlois, P., Louvet, N.: How to ensure a faithful polynomial evaluation with the compensated Horner algorithm. In: Proceedings 18th IEEE Symposium on Computer Arithmetic, pp. 141–149. IEEE Computer Society (2007)Google Scholar
  8. 8.
    Jiang, H., Li, S.G., Cheng, L.Z., Su, F.: Accurate evaluation of a polynomial and its derivative in Bernstein form. Comput. Math. Appl. 60(3), 744–755 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jiang, H., Barrio, R., Liao, X.K., Cheng, L.Z.: Accurate evalution algorithm for bivariate polynomial in Bernstein-Bźier form. Appl. Numer. Math. 61, 1147–1160 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jiang, H., Li, H.S., Cheng, L.Z., Barrio, R., Hu, C.B., Liao, X.K.: Accurate, validated and fast evaluation of Bézier tensor product surfaces. Reliable Comput. 18, 55–72 (2013)MathSciNetGoogle Scholar
  11. 11.
    Du, P.B., Jiang, H., Cheng, L.Z.: Accurate evaluation of polynomials in Legendre basis. J. Appl. Math. 2014, Article ID 742538 (2014)Google Scholar
  12. 12.
    Du, P.B., Jiang, H., Li, H.S., Cheng, L.Z., Yang, C.Q.: Accurate evaluation of bivariate polynomials. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 51–55 (2016)Google Scholar
  13. 13.
    Du, P.B., Barrio, R., Jiang, H., Cheng, L.Z.: Accurate Quotient-Difference algorithm: error analysis, improvements and applications. Appl. Math. Comput. 309, 245–271 (2017)MathSciNetGoogle Scholar
  14. 14.
    Li, X.S., Demmel, J.W., Bailey, D.H., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kapur, A., Martin, M.C., Tung, T., Yoo, D.J.: Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Softw. 28(2), 152–205 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26, 1955–1988 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rump, S., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful rounding. SIAM J. Sci. Comput. 31, 189–224 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rump, S., Ogita, T., Oishi, S.: Accurate floating-point summation part II: Sign, \(k\)-fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31, 1269–1302 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithm, 2nd edn. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  19. 19.
    Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Boston (1998)zbMATHGoogle Scholar
  20. 20.
    Dekker, T.J.: A floating-point technique for extending the available precision. Numer. Math. 18, 224–242 (1971)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Louvet, N.: Compensated algorithms in floating-point arithmetic: accuracy, validation, performances, Ph.D. thesis, Université de Perpignan Via Domitia (2007)Google Scholar
  22. 22.
    Pichat, M., Vignes, J.: Ingénierie du contrôle de la préision des calculs sur ordinateur. Technical report, Editions Technip (1993)Google Scholar
  23. 23.
    Delgado, J., Peña, J.: Algorithm 960: POLYNOMIAL: an object-oriented Matlab library of fast and efficient algorithms for polynomials. ACM Trans. Math. Softw. 42(3), 1–19 (2016). Article ID 23MathSciNetCrossRefGoogle Scholar
  24. 24.
    Delgado, J., Peña, J.: Running relative error for the evaluation of polynomials. SIAM J. Sci. Comput. 31, 3905–3921 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Peña, J., Sauer, T.: On the multivariate Horner scheme. SIAM J. Numer. Anal. 37(4), 1186–1197 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Graillat, S.: Accurate floating point product and exponentiation. IEEE Trans. Comput. 58(7), 994–1000 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hida, Y., Li, X.Y., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: 15th IEEE Symposium on Computer Arithmetic, pp. 155–162. IEEE Computer Society (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rongzhi CollegeChongqing Technology and Business UniversityChongqingChina
  2. 2.College of ComputerNational University of Defense TechnologyChangshaChina
  3. 3.Northwest Institute of Nuclear TechnologyXi’anChina

Personalised recommendations