Research on Technology Foresight Method Based on Intelligent Convergence in Open Network Environment

  • Zhao Minghui
  • Zhang Lingling
  • Zhang Libin
  • Wang Feng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)


With the development of technology, the technology foresight becomes more and more important. Delphi method as the core method of technology foresight is increasingly questioned. This paper propose a new technology foresight method based on intelligent convergence in open network environment. We put a large number of scientific and technological innovation topics into the open network technology community. Through the supervision and guidance to stimulate the discussion of expert groups, a lot of interactive information can be generated. Based on the accurate topic delivery, effective topic monitoring, reasonable topic guiding, comprehensive topic recovering, and interactive data mining, we get the technology foresight result and further look for the expert or team engaged in relevant research.


Technology foresight Intelligent convergence Open network environment 


  1. 1.
    穆荣平. 中国未来20年技术预见, (7) (2006). Mu, R.: Technology foresight of China in the next 20 years, (7) (2006)Google Scholar
  2. 2.
    习近平. 中国共产党第十九次全国代表大会报告. 人民日报 (2017). Xi, J.: Report of the Ninth National Congress of the Communist Party of China. People’s Daily (2017)Google Scholar
  3. 3.
    Martin, B.R.: Matching social needs and technological capabilities: research foresight and the implications for social sciences. Paper Presented at the OECD Workshop on Social Sciences and Innovation. United Nations University, Tokyo (2000)Google Scholar
  4. 4.
    薛军, 杨耀武. 论技术预见及其在制定中长期科技规划中的作用. 软科学 19(1), 53–55 (2005). Xue J., Yang, Y.: On technology foresight and its role in formulating mid- and long-term S&T planning. Soft Sci. 19(1), 53–55 (2005)Google Scholar
  5. 5.
    杨耀武. 技术预见:科技管理新的战略工具. 科技进步与对策 20(6), 19–21 (2003). Yang, Y.: Technology foresight: a new strategic tool for science and technology management. Sci. Technol. Prog. Policy 20(6), 19–21 (2003)Google Scholar
  6. 6.
    杨幽红, 冯爱明. 我国技术预见研究现状分析. 科技管理研究 30(20), 218–221 (2010). Yang, Y., Feng, A.: Analysis of present situation of China’s technology foresight research. Sci. Technol. Manag. Res. 30(20), 218–221 (2010)Google Scholar
  7. 7.
    Murry Jr., J.W., Hammons, J.O.: Delphi: a versatile methodology for conducting qualitative research. Rev. High. Educ. 18(4), 423–436 (1995)CrossRefGoogle Scholar
  8. 8.
    Shin, T.: Delphi study at the multi-country level: gains and limitations. In: The Proceedings of International Conference on Technology Foresight: The Approach to and Potential For New Technology Foresight. National Institute of Science and Technology Policy, Japan (2001).
  9. 9.
    Tichy, G.: The over-optimism among experts in assessment and foresight. Technol. Forecast. Soc. Change 71(4), 341–363 (2004)CrossRefGoogle Scholar
  10. 10.
    Martin, B.R.: Foresight in science and technology. Technol. Anal. Strateg. Manag. 7(2), 139–168 (1995)CrossRefGoogle Scholar
  11. 11.
    李万. APEC, UNIDO, OECD与技术预见. 世界科学 (8), 40–41 (2002). Li, W.: APEC, UNIDO, OECD and technology foresight. World Sci. (8), 40–41 (2002)Google Scholar
  12. 12.
    技术预测与国家关键技术选择研究组. 中国技术前瞻报告2003. 中国科技论坛 (2), 53 (2004). Technology Forecasting and National Key Technology Selection Research Group: China technology preview report 2003. China Sci. Technol. Forum (2), 53 (2004)Google Scholar
  13. 13.
    Jantsch, E.: Technological Forecasting in Perspective: A Framework for Technological Forecasting, Its Technique and Organisation; A Description of Activities and an Annotated Bibliography. Organisation for Economic Co-operation and Development, Paris (1967)Google Scholar
  14. 14.
    Vanston, J.H.: Technology forecasting: a practical tool for rationalizing the R&D process. NTQ (New Telecom Q.) 4(1), 57–62 (1996)Google Scholar
  15. 15.
    Technology Futures Analysis Methods Working Group: Technology futures analysis: toward integration of the field and new methods. Technol. Forecast. Soc. Change 71(3), 287–303 (2004)CrossRefGoogle Scholar
  16. 16.
    Roberts, E.B.: Exploratory and normative technological forecasting: a critical appraisal. Technol. Forecast. 1(2), 113–127 (1969)CrossRefGoogle Scholar
  17. 17.
    周源,刘怀兰,廖岭等. 基于主题模型的技术预见定量方法综述. 科技管理研究 37(11), 185–196 (2017). Zhou, Y., Liu, H., Liao, L., et al.: A quantitative review of quantitative methods based on topic models. Sci. Technol. Manag. Res. 37(11), 185–196 (2017)Google Scholar
  18. 18.
    Grupp, H., Linstone, H.A.: National technology foresight activities around the globe: resurrection and new paradigms. Technol. Forecast. Soc. Change 60(98), 85–94 (1999)CrossRefGoogle Scholar
  19. 19.
    Borch, K., Rasmussen, B.: Commercial use of GM crop technology: identifying the drivers using life cycle methodology in a technology foresight framework. Technol. Forecast. Soc. Change 69(8), 765–780 (2002)CrossRefGoogle Scholar
  20. 20.
    Celiktas, M.S., Kocar, G.: Foresight analysis of wind power in Turkey. Int. J. Energy Res. 36(6), 737–748 (2012)CrossRefGoogle Scholar
  21. 21.
    Halal, W.E.: Forecasting the technology revolution: results and learnings from the TechCast project. Technol. Forecast. Soc. Change 80(8), 1635–1643 (2013)CrossRefGoogle Scholar
  22. 22.
    Jun, S., Lee, S.J., Ryu, J.B., et al.: A novel method of IP R&D using patent analysis and expert survey. Queen Mary J. Intellect. Prop. 5(4), 474–494 (2015)CrossRefGoogle Scholar
  23. 23.
    Rikkonen, P., Tapio, P.: Future prospects of alternative agro-based bioenergy use in Finland—Constructing scenarios with quantitative and qualitative Delphi data. Technol. Forecast. Soc. Change 76(7), 978–990 (2009)CrossRefGoogle Scholar
  24. 24.
    Ramasubramanian, V., Kumar, A., Prabhu, K.V., et al.: Forecasting technological needs and prioritizing factors in agriculture from a plant breeding and genetics domain perspective: a review. Indian J. Agric. Sci. 84(3), 311–316 (2014)Google Scholar
  25. 25.
    Rohrbeck, R.: Harnessing a network of experts for competitive advantage: technology scouting in the ICT industry. R&D Manag. 40(2), 169–180 (2010)CrossRefGoogle Scholar
  26. 26.
    Chen, Y.H., Chen, C.Y., Lee, S.C.: Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Fuel Energy Abstr. 36(12), 6957–6969 (2011)Google Scholar
  27. 27.
    Celiktas, M.S., Kocar, G.: Hydrogen is not an utopia for Turkey. Int. J. Hydrog. Energy 35(1), 9–18 (2010)CrossRefGoogle Scholar
  28. 28.
    Ivlev, I., Kneppo, P., Barták, M.: Method for selecting expert groups and determining the importance of experts’ judgments for the purpose of managerial decision-making tasks in health system. E A M Ekonomie A Manag. 18(2), 57–72 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhao Minghui
    • 1
  • Zhang Lingling
    • 1
  • Zhang Libin
    • 1
  • Wang Feng
    • 1
  1. 1.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations