Analyzing Complex Models Using Data and Statistics

  • Abani K. Patra
  • Andrea Bevilacqua
  • Ali Akhavan Safei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)


Complex systems (e.g., volcanoes, debris flows, climate) commonly have many models advocated by different modelers and incorporating different modeling assumptions. Limited and sparse data on the modeled phenomena does not permit a clean discrimination among models for fitness of purpose, and, heuristic choices are usually made, especially for critical predictions of behavior that has not been experienced. We advocate here for characterizing models and the modeling assumptions they represent using a statistical approach over the full range of applicability of the models. Such a characterization may then be used to decide the appropriateness of a model for use, and, perhaps as needed weighted compositions of models for better predictive power. We use the example of dense granular representations of natural mass flows in volcanic debris avalanches, to illustrate our approach.


Model analysis Statistical analysis 


  1. 1.
    Dalbey, K., Patra, A.K., Pitman, E.B., Bursik, M.I., Sheridan, M.F.: Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J. Geophys. Res.: Solid Earth 113, 1–16 (2008). Scholar
  2. 2.
    Farrell, K., Oden, J.T., Faghihi, D.: A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems. J. Comput. Phys.
  3. 3.
    Fischer, J., Kowalski, J., Pudasaini, S.P.: Topographic curvature effects in applied avalanche modeling. Cold Reg. Sci. Technol. 74–75, 21–30 (2012). Scholar
  4. 4.
    Martin Del Pozzo, A.M., Sheridan, M.F., Barrera, M., Hubp, J.L., Selem, L.V.: Potential hazards from Colima Volcano, Mexico. Geofis. Int. 34, 363–376 (1995)Google Scholar
  5. 5.
    Patra, A.K., Bauer, A.C., Nichita, C.C., Pitman, E.B., Sheridan, M.F., Bursik, M., Rupp, B., Webber, A., Stinton, A.J., Namikawa, L.M., Renschler, C.S.: Parallel adaptive numerical simulation of dry avalanches over natural terrain. J. Volcanol. Geoth. Res. 139(1–2), 1–21 (2005). Scholar
  6. 6.
    Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rankine, W.J.M.: On the stability of loose earth. Phil. Trans. R. Soc. Lond. 147(2), 9–27 (1857)CrossRefGoogle Scholar
  8. 8.
    Rupp, B.: An analysis of granular flows over natural terrain. Master’s thesis, University at Buffalo (2004)Google Scholar
  9. 9.
    Salm, B.: Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol. 18, 221–226 (1993)CrossRefGoogle Scholar
  10. 10.
    Saucedo, R., Macías, J.L., Bursik, M.: Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima, Mexico. Bull. Volcanol. 66(4), 291–306 (2004). Scholar
  11. 11.
    Saucedo, R., Macías, J., Bursik, M., Mora, J., Gavilanes, J., Cortes, A.: Emplacement of pyroclastic flows during the 1998–1999 eruption of Volcán de Colima, México. J. Volcanol. Geoth. Res. 117(1), 129–153 (2002). Scholar
  12. 12.
    Saucedo, R., Macías, J., Sheridan, M., Bursik, M., Komorowski, J.: Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J. Volcanol. Geoth. Res. 139(1), 103–115 (2005)., modeling and Simulation of Geophysical Mass FlowsCrossRefGoogle Scholar
  13. 13.
    Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 (1989). Scholar
  14. 14.
    Sheridan, M.F., Macías, J.L.: Estimation of risk probability for gravity-driven pyroclastic flows at Volcan Colima, Mexico. J. Volcanol. Geoth. Res. 66(1), 251–256 (1995)., models of Magnetic Processes and Volcanic EruptionsCrossRefGoogle Scholar
  15. 15.
    Voellmy, A.: Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung 73, 159–165, 212–217, 246–249, 280–285 (1955)Google Scholar
  16. 16.
    Webb, A.: Granular flow experiments to validate numerical flow model, TITAN2D. Master’s thesis, University at Buffalo (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abani K. Patra
    • 1
    • 3
  • Andrea Bevilacqua
    • 2
  • Ali Akhavan Safei
    • 3
  1. 1.Computational Data Science and EngineeringUniversity at BuffaloBuffaloUSA
  2. 2.Earth Sciences DepartmentUniversity at BuffaloBuffaloUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity at BuffaloBuffaloUSA

Personalised recommendations