Advertisement

Assimilation of Fire Perimeters and Satellite Detections by Minimization of the Residual in a Fire Spread Model

  • Angel Farguell Caus
  • James Haley
  • Adam K. Kochanski
  • Ana Cortés Fité
  • Jan Mandel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

Assimilation of data into a fire-spread model is formulated as an optimization problem. The level set equation, which relates the fire arrival time and the rate of spread, is allowed to be satisfied only approximately, and we minimize a norm of the residual. Previous methods based on modification of the fire arrival time either used an additive correction to the fire arrival time, or made a position correction. Unlike additive fire arrival time corrections, the new method respects the dependence of the fire rate of spread on diurnal changes of fuel moisture and on weather changes, and, unlike position corrections, it respects the dependence of the fire spread on fuels and terrain as well. The method is used to interpolate the fire arrival time between two perimeters by imposing the fire arrival time at the perimeters as constraints.

Notes

Acknowledgments

This research was partially supported by grants NSF ICER-1664175 and NASA NNX13AH59G, and MINECO-Spain under contract TIN2014-53234-C2-1-R. High-performance computing support at CHPC at the University of Utah and Cheyenne (doi:10.5065/D6RX99HX) at NCAR CISL, sponsored by the NSF, are gratefully acknowledged.

References

  1. 1.
    Andrews, P.L.: BehavePlus fire modeling system: past, present, and future. In: Paper J2.1, 7th Symposium on Fire and Forest Meteorology (2007). http://ams.confex.com/ams/pdfpapers/126669.pdf. Accessed Sept 2011
  2. 2.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991).  https://doi.org/10.1007/978-1-4612-3172-1CrossRefMATHGoogle Scholar
  3. 3.
    Clark, T.L., Coen, J., Latham, D.: Description of a coupled atmosphere-fire model. Int. J. Wildland Fire 13, 49–64 (2004).  https://doi.org/10.1071/WF03043CrossRefGoogle Scholar
  4. 4.
    Coen, J.L.: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling. Int. J. Wildland Fire 14(1), 49–59 (2005).  https://doi.org/10.1071/WF04047CrossRefGoogle Scholar
  5. 5.
    Coen, J.L., Cameron, M., Michalakes, J., Patton, E.G., Riggan, P.J., Yedinak, K.: WRF-fire: coupled weather-wildland fire modeling with the weather research and forecasting model. J. Appl. Meteor. Climatol. 52, 16–38 (2013).  https://doi.org/10.1175/JAMC-D-12-023.1CrossRefGoogle Scholar
  6. 6.
    Coen, J.L.: Modeling wildland fires: a description of the coupled atmosphere-wildland fire environment model (CAWFE). NCAR Technical note NCAR/TN-500+STR (2013).  https://doi.org/10.5065/D6K64G2G
  7. 7.
    Coen, J.L., Schroeder, W.: Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations. Geophys. Res. Lett. 40, 1–6 (2013).  https://doi.org/10.1002/2013GL057868CrossRefGoogle Scholar
  8. 8.
    Filippi, J.B., Bosseur, F., Pialat, X., Santoni, P., Strada, S., Mari, C.: Simulation of coupled fire/atmosphere interaction with the MesoNH-ForeFire models. J. Combust. 2011, Article ID 540390 (2011).  https://doi.org/10.1155/2011/540390
  9. 9.
    Finney, M.A.: FARSITE: fire area simulator - model development and evaluation. Research Paper RMRS-RP-4, Ogden, UT, USDA Forest Service, Rocky Mountain Research Station (1998).  https://doi.org/10.2737/RMRS-RP-4. Accessed Dec 2011
  10. 10.
    Haley, J., Farguell Caus, A., Mandel, J., Kochanski, A.K., Schranz, S.: Data likelihood of active fires satellite detection and applications to ignition estimation and data assimilation. In: Viegas, D.X. (ed.) VIII International Conference on Forest Fire Research. University of Coimbra Press (2018, submitted)Google Scholar
  11. 11.
    Kochanski, A.K., Jenkins, M.A., Yedinak, K., Mandel, J., Beezley, J., Lamb, B.: Toward an integrated system for fire, smoke, and air quality simulations. Int. J. Wildland Fire 25, 534–546 (2016).  https://doi.org/10.1071/WF14074CrossRefGoogle Scholar
  12. 12.
    Linn, R., Reisner, J., Colman, J.J., Winterkamp, J.: Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 11, 233–246 (2002).  https://doi.org/10.1071/WF02007CrossRefGoogle Scholar
  13. 13.
    Mandel, J., Amram, S., Beezley, J.D., Kelman, G., Kochanski, A.K., Kondratenko, V.Y., Lynn, B.H., Regev, B., Vejmelka, M.: Recent advances and applications of WRF-SFIRE. Nat. Hazards Earth Syst. Sci. 14(10), 2829–2845 (2014).  https://doi.org/10.5194/nhess-14-2829-2014CrossRefGoogle Scholar
  14. 14.
    Mandel, J., Beezley, J.D., Coen, J.L., Kim, M.: Data assimilation for wildland fires: ensemble Kalman filters in coupled atmosphere-surface models. IEEE Control Syst. Mag. 29(3), 47–65 (2009).  https://doi.org/10.1109/MCS.2009.932224MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 4, 591–610 (2011).  https://doi.org/10.5194/gmd-4-591-2011CrossRefGoogle Scholar
  16. 16.
    Mandel, J., Beezley, J.D., Kochanski, A.K., Kondratenko, V.Y., Kim, M.: Assimilation of perimeter data and coupling with fuel moisture in a Wildland fire - atmosphere DDDAS. Procedia Comput. Sci. 9, 1100–1109 (2012).  https://doi.org/10.1016/j.procs.2012.04.119. Proceedings of ICCS 2012CrossRefGoogle Scholar
  17. 17.
    Mandel, J., Fournier, A., Haley, J.D., Jenkins, M.A., Kochanski, A.K., Schranz, S., Vejmelka, M., Yen, T.Y.: Assimilation of MODIS and VIIRS satellite active fires detection in a coupled atmosphere-fire spread model. In: Poster, 5th Annual International Symposium on Data Assimilation, 18–22 July 2016, University of Reading, UK (2016). http://www.isda2016.net/abstracts/posters/MandelAssimilationof.html. Accessed Dec 2016
  18. 18.
    McCormick, S.F., Ruge, J.W.: Unigrid for multigrid simulation. Math. Comput. 41(163), 43–62 (1983).  https://doi.org/10.2307/2007765MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mell, W., Jenkins, M.A., Gould, J., Cheney, P.: A physics-based approach to modelling grassland fires. Intl. J. Wildland Fire 16, 1–22 (2007).  https://doi.org/10.1071/WF06002CrossRefGoogle Scholar
  20. 20.
    Muñoz-Esparza, D., Kosović, B., Jiménez, P.A., Coen, J.L.: An accurate fire-spread algorithm in the weather research and forecasting model using the level-set method. J. Adv. Model. Earth Syst. (2018).  https://doi.org/10.1002/2017MS001108
  21. 21.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003).  https://doi.org/10.1007/b98879CrossRefMATHGoogle Scholar
  22. 22.
    Outcalt, K.W., Wade, D.D.: Fuels management reduces tree mortality from wildfires in southeastern United States. South. J. Appl. For. 28(1), 28–34 (2004)Google Scholar
  23. 23.
    Rehm, R.G., McDermott, R.J.: Fire-front propagation using the level set method. NIST Technical Note 1611, March 2009. https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1611.pdf
  24. 24.
    Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. USDA Forest Service Research Paper INT-115 (1972). https://www.fs.fed.us/rm/pubs_int/int_rp115.pdf. Accessed Mar 2018
  25. 25.
    Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., Morton, D.: Validation of GOES and MODIS active fire detection products using ASTER and ETM+data. Remote Sens. Environ. 112(5), 2711–2726 (2008).  https://doi.org/10.1016/j.rse.2008.01.005CrossRefGoogle Scholar
  26. 26.
    Sei, A.: VIIRS active fires: fire mask algorithm theoretical basis document (2011). https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-021_JPSS_ATBD_VIIRS-Active-Fires.pdf. Accessed 17 Nov 2013
  27. 27.
    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced research WRF version 3. NCAR Technical Note 475 (2008).  https://doi.org/10.5065/D68S4MVH. Accessed December 2011
  28. 28.
    Stephens, S.L., Ruth, L.W.: Federal forest-fire policy in the United States. Ecol. Appl. 15(2), 532–542 (2005).  https://doi.org/10.1890/04-0545CrossRefGoogle Scholar
  29. 29.
    Tymstra, C., Bryce, R., Wotton, B., Taylor, S., Armitage, O.: Development and structure of Prometheus: the Canadian Wildland fire growth simulation model. Information Report NOR-X-147, Northern Forestry Centre, Canadian Forest Service (2010). http://publications.gc.ca/collections/collection_2010/nrcan/Fo133-1-417-eng.pdf. Accessed March 2018
  30. 30.
    Vejmelka, M., Kochanski, A.K., Mandel, J.: Data assimilation of dead fuel moisture observations from remote automatic weather stations. Int. J. Wildland Fire 25, 558–568 (2016).  https://doi.org/10.1071/WF14085CrossRefGoogle Scholar
  31. 31.
    Yoder, J., Engle, D., Fuhlendorf, S.: Liability, incentives, and prescribed fire for ecosystem management. Front. Ecol. Environ. 2, 361–366 (2004). https://doi.org/10.1890/1540-9295(2004)002[0361:LIAPFF]2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Angel Farguell Caus
    • 1
    • 2
  • James Haley
    • 2
  • Adam K. Kochanski
    • 3
  • Ana Cortés Fité
    • 1
  • Jan Mandel
    • 2
  1. 1.HPCA4SE research group, Computer Architecture and Operating Systems DepartmentUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of Mathematical and Statistical SciencesUniversity of Colorado DenverDenverUSA
  3. 3.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA

Personalised recommendations