Calibration and Monitoring of IoT Devices by Means of Embedded Scientific Visualization Tools

  • Konstantin Ryabinin
  • Svetlana Chuprina
  • Mariia Kolesnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

In the paper we propose ontology based scientific visualization tools to calibrate and monitor various IoT devices in a uniform way. We suggest using ontologies to describe associated controllers, chips, sensors and related data filters, visual objects and graphical scenes to provide self-service solutions for IoT developers and device makers. High-level interface of these solutions enables composing data flow diagrams defining both the behavior of the IoT devices and rendering features. According to the data flow diagrams and the set of ontologies the firmware for IoT devices is automatically generated incorporating both the data visualization and device behavior code. After the firmware loading, it’s possible to connect to these devices using desktop computer or smartphone/tablet, get the visualization client code over HTTP, monitor the data and calibrate the devices taking into account monitoring results. To monitor the distributed IoT networks a new visualization model based on circle graph is presented. We demonstrate the implementation of suggested approach within ontology based scientific visualization system SciVi. It was tested in a real world project of an interactive Permian Antiquities Museum exhibition creating.

Keywords

IoT devices Scientific visualization tools Ontology engineering Data flow diagrams Firmware source code generation 

References

  1. 1.
    Ageev, A.: A triangle-free circle graph with chromatic number 5. Discret. Math. 152, 295–298 (1996).  https://doi.org/10.1016/0012-365X(95)00349-2MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Allan, A.: XOD-a new visual programming language for Arduino. Hackster.io (2017). https://blog.hackster.io/xod-a-new-visual-programming-language-for-arduino-7bc911cdb27. Accessed 31 Mar 2018
  3. 3.
    Ayele, G.: Semantic description of IoT security for smart grid. Master’s thesis. University of Agder (2017)Google Scholar
  4. 4.
    Brown, E.: Linux and open source hardware for IoT. Linux.com (2016). https://www.linux.com/news/linux-and-open-source-hardware-iot. Accessed 31 Mar 2018
  5. 5.
    Chianese, A., Piccialli, F.: Designing a smart museum: when cultural heritage joins IoT. In: 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, pp. 300–306 (2014).  https://doi.org/10.1109/NGMAST.2014.21
  6. 6.
    Chuprina, S., Nasraoui, O.: Using ontology-based adaptable scientific visualization and cognitive graphics tools to transform traditional information systems into intelligent systems. Sci. Vis. 8(1), 23–44 (2016)Google Scholar
  7. 7.
    Doshi, H.S., Shah, M.S., Shaikh, U.S.A.: Internet of Things (IoT): integration of Blynk for domestic usability. Vishwakarma J. Eng. Res. 1(4), 149–157 (2017)Google Scholar
  8. 8.
    El Kaed, C., Ponnouradjane, A.: A model driven approach accelerating ontology-based IoT applications development. In: CEUR Workshop (2017). http://ceur-ws.org/Vol-2063/sisiot-paper4.pdf. Accessed 31 Mar 2018
  9. 9.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993).  https://doi.org/10.1006/knac.1993.1008CrossRefGoogle Scholar
  10. 10.
    Gyrard, A., Serrano, M., Atemezing, G.A.: Semantic web methodologies, best practices and ontology engineering applied to Internet of Things. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (2015).  https://doi.org/10.1109/WF-IoT.2015.7389090
  11. 11.
    Hachem, S., Teixeira, T., Issarny, V.: Ontologies for the internet of things. In: 8th Middleware Doctoral Symposium (MDS 2011) (2011).  https://doi.org/10.1145/2093190.2093193
  12. 12.
    Hartman, S.: Taking a 21st century look at Dimetrodon. Scott Hartman’s Skeletal Drawing.com (2016). http://www.skeletaldrawing.com/home/21stcenturydimetrodon. Accessed 31 Mar 2018
  13. 13.
    Lee, B., Hurson, A.: Issues in dataflow computing. Adv. Comput. 37, 285–333 (1993).  https://doi.org/10.1016/S0065-2458(08)60407-6CrossRefGoogle Scholar
  14. 14.
  15. 15.
    nuPSYS: nuGEN™ 3D visualization of IoT networks. nuPSYS (2017). http://www.nupsys.com/nugen.html. Accessed 31 Mar 2018
  16. 16.
    Puri, D.: Coping with IoT data overload? Try 3D visualization. NetworkWorld (2016). https://www.networkworld.com/article/3140712/internet-of-things/coping-with-iot-data-overload-try-3d-visualization.html. Accessed 31 Mar 2018
  17. 17.
    Rahul: 100 IoT open source development tools and resources. Internet of Things Wiki (2016). https://internetofthingswiki.com/100-iot-open-source-development-tools-and-resources/422/. Accessed 31 Mar 2018
  18. 18.
    Reas, C., Fry, B., Maeda, J.: Processing: A Programming Handbook for Visual Designers and Artists. The MIT Press, Cambridge (2007)Google Scholar
  19. 19.
    Rivi, M., Calori, L., Muscianisi, G., Slavnic, V.: In-situ visualization: state-of-the-art and some use cases. In: PRACE (2011). http://www.prace-ri.eu/IMG/pdf/In-situ_Visualization_State-of-the-art_and_Some_Use_Cases-2.pdf. Accessed 31 Mar 2018
  20. 20.
    Rose, K., Eldridge, S., Chapin, L.: The internet of things: an overview. Technical report. The Internet Society (ISOC) (2015). https://www.internetsociety.org/resources/doc/2015/iot-overview. Accessed 31 Mar 2018
  21. 21.
    Ryabinin, K.: Methods and means for the development of adaptive multiplatform systems to visualize scientific experiments. Ph.D. thesis, Perm State University (2014)Google Scholar
  22. 22.
    Ryabinin, K., Chuprina, S.: Development of ontology-based multiplatform adaptive scientific visualization system. J. Comput.Sci. 10, 370–381 (2015).  https://doi.org/10.1016/j.jocs.2015.03.003CrossRefGoogle Scholar
  23. 23.
    Ryabinin, K., Chuprina, S.: Tackle lightweight hardware robotic devices data monitoring problems by means of scientific visualization systems. In: 27th International Conference on Computer Graphics and Vision GraphiCon 2017, pp. 142–146 (2017)Google Scholar
  24. 24.
    Ryabinin, K., Baranov, D., Belousov, K.: Integration of scientific visualization toolset SciVi with information system semograph. In: 27th International Conference on Computer Graphics and Vision GraphiCon 2017, pp. 138–141 (2017)Google Scholar
  25. 25.
    Serrano, M., et al.: IoT semantic interoperability: research challenges, best practices, recommendations and next steps. Technical report, European Research Cluster on The Internet of Things (2015). http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf. Accessed 31 Mar 2018
  26. 26.
    Seydoux, N., Drira, K., Hernandez, N., Monteil, T.: IoT-O a core-domain IoT ontology to represent connected devices networks. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) Knowledge Engineering and Knowledge Management, vol. 10024, pp. 561–576. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49004-5_36CrossRefGoogle Scholar
  27. 27.
    Texas Instruments Inc.: The top 6 challenges facing IoT - and how we are overcoming them. TI E2E™ Community (2016). http://e2e.ti.com/blogs_/b/thinkinnovate/archive/2016/02/02/the-top-6-challenges-facing-iot-and-how-we-are-overcoming-them. Accessed 31 Mar 2018
  28. 28.
    Tractica: Consumer robotics. Technical report. Tractica (2017). https://www.tractica.com/research/consumer-robotics/. Accessed 31 Mar 2018
  29. 29.
    W3C: IoT-lite ontology. W3C (2015). https://www.w3.org/Submission/iot-lite/. Accessed 31 Mar 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Perm State UniversityPermRussia
  2. 2.Perm Regional Museum/Branch Museum of Permian AntiquitiesPermRussia

Personalised recommendations