Advertisement

Dynamic Real-Time Infrastructure Planning and Deployment for Disaster Early Warning Systems

  • Huan Zhou
  • Arie Taal
  • Spiros Koulouzis
  • Junchao Wang
  • Yang Hu
  • George SuciuJr.
  • Vlad Poenaru
  • Cees de Laat
  • Zhiming Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

An effective nature disaster early warning system often relies on widely deployed sensors, simulation based predicting components, and a decision making system. In many cases, the simulation components require advanced infrastructures such as Cloud for performing the computing tasks. However, effectively customizing the virtualized infrastructure from Cloud based time critical constraints and locations of the sensors, and scaling it based on dynamic loads of the computation at runtime is still difficult. The suitability of a Dynamic Real-time Infrastructure Planner (DRIP) that handles the provisioning within cloud environments of the virtual infrastructure for time-critical applications is demonstrated with respect to disaster early warning systems. The DRIP system is part of the SWITCH project (Software Workbench for Interactive, Time Critical and Highly self-adaptive Cloud applications).

Keywords

Cloud Disaster early warning Time critical systems 

Notes

Acknowledgement

This research has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreements 643963 (SWITCH project), 654182 (ENVRIPLUS project) and 676247 (VRE4EIC project).

References

  1. 1.
    Suciu, G., Suciu, V., Butca, C., Dobre, C., Pop, F.: Elastic disaster early warning system using a cloud-based communication center. In: Proceedings of the 13th IEEE International Conference on Intelligent Computer Communication and Processing (2017)Google Scholar
  2. 2.
    Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor, I., Stankovski, V., Vega, I.G., Suciu, G., Ulisses, A., Laat, C.: Developing and operating time critical applications in clouds: the state of the art and the SWITCH approach. In: The Proceedings of HOLACONF - Cloud Forward: From Distributed to Complete Computing, Procedia Computer Science, vol. 68, pp. 17–28. Elsevier (2015)CrossRefGoogle Scholar
  3. 3.
    Zschau, J., Küppers, A.N. (eds.): Early Warning Systems for Natural Disaster Reduction. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-55903-7CrossRefGoogle Scholar
  4. 4.
    Glade, T., Nadim, F.: Early warning systems for natural hazards and risks. Nat. Hazards 70(3), 1669 (2014)CrossRefGoogle Scholar
  5. 5.
    de Groot, William J., Flannigan, Michael D.: Climate change and early warning systems for wildland fire. In: Zommers, Z., Singh, A. (eds.) Reducing Disaster: Early Warning Systems For Climate Change, pp. 127–151. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-017-8598-3_7CrossRefGoogle Scholar
  6. 6.
    Horita, F.E., de Albuquerque, J.P., Marchezini, V., Mendiondo, E.M.: A qualitative analysis of the early warning process in disaster management. In: Proceedings of the ISCRAM 2016 Conference–Rio de Janeiro, Brazil (2016)Google Scholar
  7. 7.
    Cools, J., Innocenti, D., O’Brien, S.: Lessons from flood early warning systems. Environ. Sci. Policy 58, 117–122 (2016)CrossRefGoogle Scholar
  8. 8.
    Alhmoudi, A., Aziz, Z.U.H.: Integrated framework for early warning system in UAE. Int. J. Disaster Resilience Built Environ. 7, 361–373 (2016)CrossRefGoogle Scholar
  9. 9.
    Arcorace, M., Silvestro, F., Rudari, R., Boni, G., Dell’Oro, L., Bjorgo, E.: Forecast-based integrated flood detection system for emergency response and disaster risk reduction (Flood-FINDER). In: EGU General Assembly Conference Abstracts, vol. 18, p. 8770 (2016)Google Scholar
  10. 10.
    Udo, J., Jungermann, N.: Early warning system Ghana: how to successfully implement a disaster early warning system in a data scarce region. In: EGU General Assembly Conference Abstracts, vol. 18, p. 12819 (2016)Google Scholar
  11. 11.
    Laplante, P.A., Ovaska, S.J.: Real-Time Systems Design and Analysis: Tools for the Practitioner. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  12. 12.
    Poslad, S., Middleton, S.E., Chaves, F., Tao, R., Necmioglu, O., Bügel, U.: A semantic IoT early warning system for natural environment crisis management. IEEE Trans. Emerg. Top. Comput. 3(2), 246–257 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhao, Z., Grosso, P., van der Ham, J., Koning, R., de Laat, C.: An agent based network resource planner for workflow applications. Multiagent Grid Syst. 7(6), 187–202 (2011)CrossRefGoogle Scholar
  14. 14.
    Evans, K., Jones, A., Preece, A., Quevedo, F., Rogers, D., Spasić, I., Taylor, I., Stankovski, V., Taherizadeh, S., Trnkoczy, J., Suciu, G., Suciu, V., Martin, P., Wang, J., Zhao, Z.: Dynamically reconfigurable workflows for time-critical applictions. In: Proceedings of the 10th Workshop on Workflows in Support of Large-Scale Science, p. 7. ACM (2015)Google Scholar
  15. 15.
    Abrishami, S., Naghibzadeh, M., Epema, D.: Deadline-constrained work-flow scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput. Syst. 29(1), 158–169 (2013)CrossRefGoogle Scholar
  16. 16.
    Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner, F.: Random graph generation for scheduling simulations. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques, p. 60. ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (2010)Google Scholar
  17. 17.
    Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H., Pang, J., de Laat, C., Zhao, Z.: Planning virtual infrastructures for time critical applications with multiple deadline constraints. Future Gener. Comput. Syst. 75, 365–375 (2017)CrossRefGoogle Scholar
  18. 18.
    Wang, J., de Laat, C., Zhao, Z.: QoS-aware virtual SDN network planning. In: Proceedings of IFIP/IEEE International Symposium on Integrated Network Management. IEEE (2017)Google Scholar
  19. 19.
    Elzinga, O., Koulouzis, S., Taal, A., Wang, J., Hu, Y., Zhou, H., Martin, P., de Laat, C., Zhao, Z.: Automatic collector for dynamic cloud performance information. In: Proceedings of 12th International Conference on Networking, Architecture, and Storage (2017)Google Scholar
  20. 20.
    Zhou, H., Wang, J., Hu, Y., Su, J., Martin, P., De Laat, C., Zhao, Z.: Fast resource co-provisioning for time critical application based on networked infrastructure. In: IEEE International Conference on CLOUD, San Francisco, US (2016)Google Scholar
  21. 21.
    Hu, Y., Wang, J., Zhou, H., Martin, P., Taal, A., de Laat, C., Zhao, Z.: Deadline-aware deployment for time critical applications in clouds. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 345–357. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64203-1_25CrossRefGoogle Scholar
  22. 22.
    Zhao, Z., Taal, A., Jones, A., Taylor, I., Stankovski, V., Vega, I.G., Hidalgo, F.J., Suciu, G., Ulisses, A., Ferreira, P, de Laat, C.: A software workbench for interactive, time critical and highly self-adaptive cloud applications (SWITCH). In: The Proceedings of IEEE CCGrid (2015)Google Scholar
  23. 23.
    Zhao, Z., van Albada, D., Sloot, P.: Agent-based flow control for HLA components. Int. J. Simul. Trans. 81(7), 487–501 (2005)Google Scholar
  24. 24.
    Zhou, H., Hu, Y., Wang, J., Martin, P., De Laat, C., Zhao, Z.: Fast and dynamic resource provisioning for quality critical cloud applications. In: IEEE International Symposium On Real-time Computing (ISORC), York, UK (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.BEIA ConsultantBucharestRomania

Personalised recommendations