Enabling Adaptive Mesh Refinement for Single Components in ECHAM6

  • Yumeng ChenEmail author
  • Konrad Simon
  • Jörn Behrens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)


Adaptive mesh refinement (AMR) can be used to improve climate simulations since these exhibit features on multiple scales which would be too expensive to resolve using non-adaptive meshes. In particular, long-term climate simulations only allow for low resolution simulations using current computational resources. We apply AMR to single components of the existing earth system model (ESM) instead of constructing a complex ESM based on AMR. In order to compatibly incorporate AMR into an existing model, we explore the applicability of a tree-based data structure. Using a numerical scheme for tracer transport in ECHAM6, we test the performance of AMR with our data structure utilizing an idealized test case. The numerical results show that the augmented data structure is compatible with the data structure of the original model and also demonstrate improvements of the efficiency compared to non-adaptive meshes.


AMR Data strucuture Climate modeling 



This work was supported by German Federal Ministry of Education and Research (BMBF) as Research for Sustainability initiative (FONA); through Palmod project (FKZ: 01LP1513A).


  1. 1.
    Aghedo, A.M., Rast, S., Schultz, M.G.: Sensitivity of tracer transport to model resolution, prescribed meteorology and tracer lifetime in the general circulation model ECHAM5. Atmos. Chem. Phys. 10(7), 3385–3396 (2010)CrossRefGoogle Scholar
  2. 2.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298–2316 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    MacNeice, P., Olson, K.M., Mobarry, C., De Fainchtein, R., Packer, C.: PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126(3), 330–354 (2000)CrossRefGoogle Scholar
  5. 5.
    Oehmke, R.H., Stout, Q.F.: Parallel adaptive blocks on a sphere. In: PPSC (2001)Google Scholar
  6. 6.
    Behrens, J., Rakowsky, N., Hiller, W., Handorf, D., Läuter, M., Päpke, J., Dethloff, K.: amatos: parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Model. 10(1–2), 171–183 (2005)CrossRefGoogle Scholar
  7. 7.
    Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Adams, M., Schwartz, P.O., Johansen, H., Colella, P., Ligocki, T.J., Martin, D., Keen, N., Graves, D., Modiano, D., Van Straalen, B., et al.: Chombo software package for AMR applications-design document. Technical report (2015)Google Scholar
  9. 9.
    Jablonowski, C., Oehmke, R.C., Stout, Q.F.: Block-structured adaptive meshes and reduced grids for atmospheric general circulation models. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1907), 4497–4522 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    McCorquodale, P., Ullrich, P., Johansen, H., Colella, P.: An adaptive multiblock high-order finite-volume method for solving the shallow-water equations on the sphere. Commun. Appl. Math. Comput. Sci. 10(2), 121–162 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., et al.: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5(2), 146–172 (2013)CrossRefGoogle Scholar
  12. 12.
    Ji, H., Lien, F.S., Yee, E.: A new adaptive mesh refinement data structure with an application to detonation. J. Comput. Phys. 229(23), 8981–8993 (2010)CrossRefGoogle Scholar
  13. 13.
    Behrens, J.: An adaptive semi-Lagrangian advection scheme and its parallelization. Monthly Weather Rev. 124(10), 2386–2395 (1996)CrossRefGoogle Scholar
  14. 14.
    Jablonowski, C., Herzog, M., Penner, J.E., Oehmke, R.C., Stout, Q.F., Van Leer, B., Powell, K.G.: Block-structured adaptive grids on the sphere: advection experiments. Monthly Weather Rev. 134(12), 3691–3713 (2006)CrossRefGoogle Scholar
  15. 15.
    Blayo, E., Debreu, L.: Adaptive mesh refinement for finite-difference ocean models: first experiments. J. Phys. Oceanogr. 29(6), 1239–1250 (1999)CrossRefGoogle Scholar
  16. 16.
    Behrens, J.: Atmospheric and ocean modeling with an adaptive finite element solver for the shallow-water equations. Appl. Numer. Math. 26(1–2), 217–226 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ullrich, P.A., Jablonowski, C.: An analysis of 1D finite-volume methods for geophysical problems on refined grids. J. Comput. Phys. 230(3), 706–725 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nair, R.D., Jablonowski, C.: Moving vortices on the sphere: a test case for horizontal advection problems. Monthly Weather Rev. 136(2), 699–711 (2008)CrossRefGoogle Scholar
  19. 19.
    Lin, S.J., Rood, R.B.: Multidimensional flux-form semi-Lagrangian transport schemes. Monthly Weather Rev. 124, 2046–2070 (1996)CrossRefGoogle Scholar
  20. 20.
    Nair, R.D., Machenhauer, B.: The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Monthly Weather Rev. 130(3), 649–667 (2002)CrossRefGoogle Scholar
  21. 21.
    Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany

Personalised recommendations