Advertisement

Explicit Size-Reduction-Oriented Design of a Compact Microstrip Rat-Race Coupler Using Surrogate-Based Optimization Methods

  • Slawomir Koziel
  • Adrian Bekasiewicz
  • Leifur Leifsson
  • Xiaosong Du
  • Yonatan Tesfahunegn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

In this paper, an explicit size reduction of a compact rat-race coupler implemented in a microstrip technology is considered. The coupler circuit features a simple topology with a densely arranged layout that exploits a combination of high- and low-impedance transmission line sections. All relevant dimensions of the structure are simultaneously optimized in order to explicitly reduce the coupler size while maintaining equal power split at the operating frequency of 1 GHz and sufficient bandwidth for return loss and isolation characteristics. Acceptable levels of electrical performance are ensured by using a penalty function approach. Two designs with footprints of 350 mm2 and 360 mm2 have been designed and experimentally validated. The latter structure is characterized by 27% bandwidth. For the sake of computational efficiency, surrogate-based optimization principles are utilized. In particular, we employ an iterative construction and re-optimization of the surrogate model involving a suitably corrected low-fidelity representation of the coupler structure. This permits rapid optimization at the cost corresponding to a handful of evaluations of the high-fidelity coupler model.

Keywords

Microwave couplers Rat-race couplers Coupler optimization Surrogate-based optimization Computer-aided design Compact coupler Compact microstrip resonant cells 

References

  1. 1.
    Koziel, S., Bekasiewicz, A., Kurgan, P.: Size reduction of microwave couplers by EM-driven optimization. In: International Microwave Symposium (2015)Google Scholar
  2. 2.
    Zheng, S.Y., Yeung, S.H., Chan, W.S., Man, K.F., Leung, S.H.: Size-reduced rectangular patch hybrid coupler using patterned ground plane. IEEE Trans. Microwave Theory Techn. 57(1), 180–188Google Scholar
  3. 3.
    Bekasiewicz, A., Koziel, S., Zieniutycz, W.: A structure and design optimization of novel compact microscrip dual-band rat-race coupler with enhanced bandwidth. Microwave Opt. Technol. Lett. 58(10), 2287–2291 (2016)CrossRefGoogle Scholar
  4. 4.
    Koziel, S., Bekasiewicz, A., Kurgan, P., Bandler, J.W.: Rapid multi-objective design optimization of compact microwave couplers by means of physics-based surrogates. IET Microwaves, Antennas Propag. 10(5), 479–486 (2015)CrossRefGoogle Scholar
  5. 5.
    Koziel, S., Kurgan, P., Pankiewicz, B.: Cost-efficient design methodology for compact rat-race couplers. Int. J. RF Microwave Comput. Aided Eng. 25(3), 236–242 (2015)CrossRefGoogle Scholar
  6. 6.
    Tseng, C.-H., Chen, H.-J.: Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microwaves Wirel. Compon. Lett. 18(11), 734–736 (2008)CrossRefGoogle Scholar
  7. 7.
    Liao, S.-S., Sun, P.-T., Chin, N.-C., Peng, J.-T.: A novel compact-size branch-line coupler. IEEE Microwaves Wirel. Compon. Lett. 15(9), 588–590 (2005)CrossRefGoogle Scholar
  8. 8.
    Tseng, C.-H., Chang, C.-L.: A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microwave Theory Tech. 60(7), 2085–2092 (2012)CrossRefGoogle Scholar
  9. 9.
    Bekasiewicz, A., Kurgan, P.: A compact microstrip rat-race coupler constituted by nonuniform transmission lines. Microwave Opt. Technol. Lett. 56(4), 970–974 (2014)CrossRefGoogle Scholar
  10. 10.
    Tsai, K.-Y., Yang, H.-S., Chen, J.-H., Chen, Y.-J.: A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression. IEEE Microwaves Wirel. Compon. Lett. 21(10), 537–539 (2011)CrossRefGoogle Scholar
  11. 11.
    Koziel, S., Yang, X.S., Zhang, Q.J. (eds.): Simulation-Driven Design Optimization and Modeling for Microwave Engineering. Imperial College Press, London (2013)Google Scholar
  12. 12.
    Koziel, S., Leifsson, L. (eds.): Surrogate-Based Modeling and Optimization. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-7551-4CrossRefzbMATHGoogle Scholar
  13. 13.
    Koziel, S., Bekasiewicz, A.: Rapid microwave design optimization using adaptive response scaling. IEEE Trans. Microwave Theory Techn. 64(9), 2749–2757 (2016)CrossRefGoogle Scholar
  14. 14.
    Bekasiewicz, A., Koziel, S.: Response features and circuit decomposition for accelerated EM-driven design of compact impedance matching transformers. Microwave Opt. Techn. Lett. 58(9), 2130–2133 (2016)CrossRefGoogle Scholar
  15. 15.
    Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)CrossRefGoogle Scholar
  16. 16.
    Koziel, S., Bandler, J.W., Cheng, Q.S.: Reduced-cost microwave component modeling using space-mapping-enhanced EM-based kriging surrogates. Int. J. Numer. Model. Electron. Netw. Devices Fields 26(3), 275–286 (2013)CrossRefGoogle Scholar
  17. 17.
    CST Microwave Studio, ver. 2013. CST AG, Darmstadt (2013)Google Scholar
  18. 18.
    Koziel, S., Bekasiewicz, A.: Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling. IEEE Trans. Microwave Theory Techn. 63(12), 4019–4026 (2015)CrossRefGoogle Scholar
  19. 19.
    Zhang, C.F.: Planar rat-race coupler with microstrip electromagnetic bandgap element. Microwave Opt. Techn. Lett. 53(11), 2619–2622 (2011)CrossRefGoogle Scholar
  20. 20.
    Shao, W., He, J., Wang, B.-Z.: Compact rat-race ring coupler with capacitor loading. Microwave Opt. Techn. Lett. 52(1), 7–9 (2010)CrossRefGoogle Scholar
  21. 21.
    Wang, J., Wang, B.-Z., Guo, Y.X., Ong, L.C., Xiao, S.: Compact slow-wave microstrip rat-race ring coupler. Electron. Lett. 43(2), 111–113 (2007)CrossRefGoogle Scholar
  22. 22.
    Koziel, S., Bekasiewicz, A., Kurgan, P.: Rapid multi-objective simulation-driven design of compact microwave circuits. Microwave Opt. Techn. Lett. 25(5), 277–279 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Optimization and Modeling Center, School of Science and EngineeringReykjavík UniversityReykjavíkIceland
  2. 2.Faculty of Electronics Telecommunications and InformaticsGdansk University of TechnologyGdanskPoland
  3. 3.Department of Aerospace EngineeringIowa State UniversityAmesUSA

Personalised recommendations