Advertisement

A Hybrid Optimization Algorithm for Electric Motor Design

  • Mokhtar Essaid
  • Lhassane Idoumghar
  • Julien Lepagnot
  • Mathieu Brévilliers
  • Daniel Fodorean
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

This paper presents a hybrid algorithm employed to reduce the weight of an electric motor, designed for electric vehicle (EV) propulsion. The approach uses a hybridization between Cuckoo Search and CMAES to generate an initial population. Then, the population is transferred to a new procedure which adaptively switches between two search strategies, i.e. one for exploration and one for exploitation. Besides the electric motor optimization, the proposed algorithm performance is also evaluated using the 15 functions of the CEC 2015 competition benchmark. The results reveal that the proposed approach can show a very competitive performance when compared with different state-of-the-art algorithms.

Keywords

Electric motors Hybridization Cuckoo search CMAES 

References

  1. 1.
    Awad, N.H., Ali, M.Z., Suganthan, P.N., Reynolds, R.G.: An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark prolems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 2958–2965 (2016)Google Scholar
  2. 2.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)CrossRefGoogle Scholar
  3. 3.
    Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brest, J., Maucec, M.S., Boskovic, B.: iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1188–1195 (2016)Google Scholar
  5. 5.
    Crepinsek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms. ACM Comput. Surv. 45(3), 1–33 (2013)CrossRefGoogle Scholar
  6. 6.
    Fodorean, D., Idoumghar, L., N’diaye, A., Bouquain, D., Miraoui, A.: Simulated annealing algorithm for the optimisation of an electrical machine. IET Electr. Power Appl. 6(9), 735–742 (2012)CrossRefGoogle Scholar
  7. 7.
    Fodorean, D., Idoumghar, L., Szabo, L.: Motorization for an electric scooter by using permanent-magnet machines optimized based on a hybrid metaheuristic algorithm. IEEE Trans. Veh. Technol. 62(1), 39–49 (2013)CrossRefGoogle Scholar
  8. 8.
    Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)CrossRefGoogle Scholar
  9. 9.
    Halder, U., Das, S., Maity, D.: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments. IEEE Trans. Cybern. 43(3), 881–897 (2013)CrossRefGoogle Scholar
  10. 10.
    Han, Z.H., Zhang, K.S.: Surrogate-based optimization. In: Real-World Applications of Genetic Algorithms. InTech (2012)Google Scholar
  11. 11.
    Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)CrossRefGoogle Scholar
  12. 12.
    Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2585–2592 (2014)Google Scholar
  13. 13.
    Liang, J., Qu, B., Suganthan, P., Chen, Q.: Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, Nanyang Technological University, Singapore (2014)Google Scholar
  14. 14.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley, California (1967)Google Scholar
  15. 15.
    Pence, I., Cesmeli, M.S., Senel, F.A., Cetisli, B.: A new unconstrained global optimization method based on clustering and parabolic approximation. Expert Syst. Appl. 55, 493–507 (2016)CrossRefGoogle Scholar
  16. 16.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tanabe, R., Fukunaga, A.: Evaluating the performance of shade on CEC 2013 benchmark problems. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1952–1959 (2013)Google Scholar
  18. 18.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014)Google Scholar
  19. 19.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC). IEEE (2009)Google Scholar
  20. 20.
    Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mokhtar Essaid
    • 1
  • Lhassane Idoumghar
    • 1
  • Julien Lepagnot
    • 1
  • Mathieu Brévilliers
    • 1
  • Daniel Fodorean
    • 2
  1. 1.IRIMASUniversity of Haute-AlsaceMulhouseFrance
  2. 2.Department of Electrical Machines and DrivesTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations