An Effective Model Between Mobile Phone Usage and P2P Default Behavior

  • Huan Liu
  • Lin Ma
  • Xi Zhao
  • Jianhua Zou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)


P2P online lending platforms have become increasingly developed. However, these platforms may suffer a serious loss caused by default behaviors of borrowers. In this paper, we present an effective default behavior prediction model to reduce default risk in P2P lending. The proposed model uses mobile phone usage data, which are generated from widely used mobile phones. We extract features from five aspects, including consumption, social network, mobility, socioeconomic, and individual attribute. Based on these features, we propose a joint decision model, which makes a default risk judgment through combining Random Forests with Light Gradient Boosting Machine. Validated by a real-world dataset collected by a mobile carrier and a P2P lending company in China, the proposed model not only demonstrates satisfactory performance on the evaluation metrics but also outperforms the existing methods in this area. Based on these results, the proposed model implies the high feasibility and potential to be adopted in real-world P2P online lending platforms.


P2P default behavior Prediction Mobile phone usage Joint decision model 


  1. 1.
    Boase, J., Ling, R.: Measuring mobile phone use: self-report versus log data. J. Comput.-Mediated Commun. 18(4), 508–519 (2013)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  3. 3.
    Chen, X., Zhou, L., Wan, D.: Group social capital and lending outcomes in the financial credit market : an empirical study of online peer-to-peer lending. Electron. Commer. Res. Appl. 15(C), 1–13 (2016)CrossRefGoogle Scholar
  4. 4.
    Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the International Conference on Machine Learning, ICML 2006, New York, NY, USA, pp. 233–240 (2006)Google Scholar
  5. 5.
    Emekter, R., Tu, Y., Jirasakuldech, B., Lu, M.: Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending. Appl. Econ. 47(1), 54–70 (2015)CrossRefGoogle Scholar
  6. 6.
    Gathergood, J.: Self-control, financial literacy and consumer over-indebtedness. Soc. Sci. Electron. Publishing 33(3), 590–602 (2012)Google Scholar
  7. 7.
    Gonzalez, L., Loureiro, Y.K.: When can a photo increase credit? The impact of lender and borrower profiles on online peer-to-peer loans. J. Behav. Exp. Financ. 2, 44–58 (2014)CrossRefGoogle Scholar
  8. 8.
    Guo, Y., Zhou, W., Luo, C., Liu, C., Xiong, H.: Instance-based credit risk assessment for investment decisions in P2P lending. Eur. J. Oper. Res. 249(2), 417–426 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harari, G.M., Lane, N.D., Wang, R., Crosier, B.S., Campbell, A.T., Gosling, S.D.: Using smartphones to collect behavioral data in psychological science: opportunities, practical considerations, and challenges. Perspect. Psychol. Sci. 11(6), 838–854 (2016)CrossRefGoogle Scholar
  10. 10.
    Harari, G.M., Müller, S.R., Aung, M.S., Rentfrow, P.J.: Smartphone sensing methods for studying behavior in everyday life. Curr. Opin. Behav. Sci. 18, 83–90 (2017)CrossRefGoogle Scholar
  11. 11.
    JiaZhuo, W., Hongwei, X.: China’s Online Lending Industry in 2015. Tsinghua University Press, Beijing (2015)Google Scholar
  12. 12.
    Lin, M., Prabhala, N.R., Viswanathan, S.: Judging borrowers by the company they keep: social networks and adverse selection in online peer-to-peer lending. SSRN eLibrary (2009)Google Scholar
  13. 13.
    Liu, S., Qu, Q., Wang, S.: Rationality analytics from trajectories. ACM Trans. Knowl. Discov. Data (TKDD) 10(1), 10 (2015)Google Scholar
  14. 14.
    Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random forests. Expert Syst. Appl. 42(10), 4621–4631 (2015)CrossRefGoogle Scholar
  15. 15.
    de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personality using novel mobile phone-based metrics. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg (2013). Scholar
  16. 16.
    Oliveira, R.D., Karatzoglou, A., Cerezo, P.C., Oliver, N.: Towards a psychographic user model from mobile phone usage. In: CHI 11 Extended Abstracts on Human Factors in Computing Systems, pp. 2191–2196 (2011)Google Scholar
  17. 17.
    Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Comput. Surv. (CSUR) 45(4), 42 (2013)CrossRefGoogle Scholar
  18. 18.
    Pedro, J.S., Proserpio, D., Oliver, N.: MobiScore: towards universal credit scoring from mobile phone data. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds.) UMAP 2015. LNCS, vol. 9146, pp. 195–207. Springer, Cham (2015). Scholar
  19. 19.
    Polena, M., Regner, T., et al.: Determinants of borrowers default in P2P lending under consideration of the loan risk class. Jena Econ. Res. Pap. 2016, 023 (2016)Google Scholar
  20. 20.
    Renso, C., Baglioni, M., de Macedo, J.A.F., Trasarti, R., Wachowicz, M.: How you move reveals who you are: understanding human behavior by analyzing trajectory data. Knowl. Inf. Syst. 37, 1–32 (2013)CrossRefGoogle Scholar
  21. 21.
    Serrano-Cinca, C., Gutierrez-Nieto, B., López-Palacios, L.: Determinants of default in P2P lending. PLoS ONE 10(10), e0139427 (2015)CrossRefGoogle Scholar
  22. 22.
    Serrano-Cinca, C., Gutierrez-Nieto, B.: The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending. Decis. Support Syst. 89(C), 113–122 (2016)CrossRefGoogle Scholar
  23. 23.
    Soto, V., Frias-Martinez, V., Virseda, J., Frias-Martinez, E.: Prediction of socioeconomic levels using cell phone records. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 377–388. Springer, Heidelberg (2011). Scholar
  24. 24.
    Wang, D., Zhang, Y., Zhao, Y.: LightGBM: an effective miRNA classification method in breast cancer patients. In: International Conference, pp. 7–11 (2017)Google Scholar
  25. 25.
    Wang, M., Zheng, X., Zhu, M., Hu, Z.: P2P lending platforms bankruptcy prediction using fuzzy SVM with region information. In: 2016 IEEE 13th International Conference on e-Business Engineering (ICEBE), pp. 115–122. IEEE (2016)Google Scholar
  26. 26.
    Wang, S., Qi, Y., Fu, B., Liu, H.: Credit risk evaluation based on text analysis. Int. J. Cogn. Inform. Nat. Intell. 10(1), 1–11 (2016)CrossRefGoogle Scholar
  27. 27.
    Wang, X., Zhang, D., Zeng, X., Wu, X.: A Bayesian investment model for online P2P lending. In: Su, J., Zhao, B., Sun, Z., Wang, X., Wang, F., Xu, K. (eds.) Frontiers in Internet Technologies. CCIS, vol. 401, pp. 21–30. Springer, Heidelberg (2013). Scholar
  28. 28.
    Wu, S., Kang, N., Yang, L.: Fraudulent behavior forecast in telecom industry based on data mining technology. Commun. IIMA 7(4), 1 (2014)Google Scholar
  29. 29.
    Zhang, Y., Jia, H., Diao, Y., Hai, M., Li, H.: Research on credit scoring by fusing social media information in online peer-to-peer lending. Procedia Comput. Sci. 91, 168–174 (2016)CrossRefGoogle Scholar
  30. 30.
    Zhao, H., Ge, Y., Liu, Q., Wang, G., Chen, E., Zhang, H.: P2P lending survey: platforms, recent advances and prospects. ACM Trans. Intell. Syst. Technol. (TIST) 8(6), 72 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of ManagementXi’an Jiaotong UniversityXi’anChina
  3. 3.State Key Laboratory for Manufacturing Systems EngineeringXi’anChina
  4. 4.Shaanxi Engineering Research Center of Medical and Health Big DataXi’anChina

Personalised recommendations