Advertisement

Parallel Harris Corner Detection on Heterogeneous Architecture

  • Yiwei He
  • Yue Ma
  • Dalian Liu
  • Xiaohua Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

Corner detection is a fundamental step for many image processing applications including image enhancement, object detection and pattern recognition. Recent years, the quality and the number of images are higher than before, and applications mainly perform processing on videos or image flow. With the popularity of embedded devices, the real-time processing on the limited computing resources is an essential problem in high-performance computing. In this paper, we study the parallel method of Harris corner detection and implement it on a heterogeneous architecture using OpenCL. We also adopt some optimization strategy on the many-core processor. Experimental results show that our parallel and optimization methods highly improve the performance of Harris algorithm on the limited computing resources.

Keywords

Harris corner detection Heterogeneous architecture Parallel computing OpenCL 

Notes

Acknowledgments

This work has been partially supported by grants from the National Natural Science Foundation of China (Nos. 61472390, 71731009, 71331005 and 91546201), the Beijing Natural Science Foundation (No. 1162005), Premium Funding Project for Academic Human Resources Development in Beijing Union University.

References

  1. 1.
    Ben-Musa, A.S., Singh, S.K., Agrawal, P.: Object detection and recognition in cluttered scene using Harris corner detection. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 181–184, July 2014Google Scholar
  2. 2.
    Dey, N., Nandi, P., Barman, N., Das, D., Chakraborty, S.: A comparative study between Moravec and Harris corner detection of noisy images using adaptive wavelet thresholding technique. Comput. Sci. (2012)Google Scholar
  3. 3.
    Haggui, O., Tadonki, C., Lacassagne, L., Sayadi, F., Ouni, B.: Harris corner detection on a NUMA manycore. Future Gener. Comput. Syst. (2018)Google Scholar
  4. 4.
    Han, X., Ge, M., Qinglei, Z.: Harris corner detection algorithm on OpenCL architecture. Comput. sci. 41(7), 306–309, 321 (2014)Google Scholar
  5. 5.
    Harris, C.: A combined corner and edge detector. In: 1988 Proceedings of the 4th Alvey Vision Conference, no. 3, pp. 147–151 (1988)Google Scholar
  6. 6.
    Jasani, B.A., Lam, S., Meher, P.K., Wu, M.: Threshold-guided design and optimization for Harris corner detector architecture. IEEE Trans. Circ. Syst. Video Technol. PP(99), 1 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, D., Tian, Y.: Global and local metric learning via eigenvectors. Knowl.-Based Syst. 116, 152–162 (2017)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, p. 1150 (2002)Google Scholar
  9. 9.
    Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing techniques. ACM Comput. Surv. 47(4), 1–35 (2015)CrossRefGoogle Scholar
  10. 10.
    Niu, L., Zhou, R., Tian, Y., Qi, Z., Zhang, P.: Nonsmooth penalized clustering via \(ell _{p}\) regularized sparse regression. IEEE Trans. Cybern. 47(6), 1423–1433 (2017)CrossRefGoogle Scholar
  11. 11.
    Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)CrossRefGoogle Scholar
  12. 12.
    Paul, J., et al.: Resource-aware Harris corner detection based on adaptive pruning. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS, vol. 8350, pp. 1–12. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04891-8_1CrossRefGoogle Scholar
  13. 13.
    Phull, R., Mainali, P., Yang, Q., Alface, P.R., Sips, H.: Low complexity corner detector using CUDA for multimedia application. In: International Conferences on Advances in Multimedia, MMEDIA (2011)Google Scholar
  14. 14.
    Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Commun. ACM 55(6), 61–69 (2012)CrossRefGoogle Scholar
  15. 15.
    Qi, Z., Meng, F., Tian, Y., Niu, L., Shi, Y., Zhang, P.: Adaboost-LLP: a boosting method for learning with label proportions. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–12 (2018)CrossRefGoogle Scholar
  16. 16.
    Saidani, T., Lacassagne, L., Falcou, J., Tadonki, C., Bouaziz, S.: Parallelization schemes for memory optimization on the cell processor: a case study on the Harris corner detector. In: Stenström, P. (ed.) Transactions on High-Performance Embedded Architectures and Compilers III. LNCS, vol. 6590, pp. 177–200. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19448-1_10CrossRefGoogle Scholar
  17. 17.
    Schulz, V.H., Bombardelli, F.G., Todt, E.: A Harris corner detector implementation in SoC-FPGA for visual SLAM. In: Santos Osório, F., Sales Gonçalves, R. (eds.) LARS/SBR -2016. CCIS, vol. 619, pp. 57–71. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47247-8_4CrossRefGoogle Scholar
  18. 18.
    Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)CrossRefGoogle Scholar
  19. 19.
    Tang, J., Tian, Y.: A multi-kernel framework with nonparallel support vector machine. Neurocomputing 266, 226–238 (2017)CrossRefGoogle Scholar
  20. 20.
    Tang, J., Tian, Y., Zhang, P., Liu, X.: Multiview privileged support vector machines. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–15 (2017)CrossRefGoogle Scholar
  21. 21.
    Tian, Y., Ju, X., Qi, Z., Shi, Y.: Improved twin support vector machine. Sci. China Math. 57(2), 417–432 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tian, Y., Qi, Z., Ju, X., Shi, Y., Liu, X.: Nonparallel support vector machines for pattern classification. IEEE Trans. Cybern. 44(7), 1067–1079 (2014)CrossRefGoogle Scholar
  23. 23.
    Weijer, V.D., Gevers, T., Geusebroek, J.M.: Edge and corner detection by photometric quasi-invariants. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 625–630 (2005)CrossRefGoogle Scholar
  24. 24.
    Xu, D., Wu, J., Li, D., Tian, Y., Zhu, X., Wu, X.: SALE: self-adaptive lsh encoding for multi-instance learning. Pattern Recogn. 71, 460–482 (2017)Google Scholar
  25. 25.
    Zhu, J., Yang, K.: Fast Harris corner detection algorithm based on image compression and block. In: IEEE 2011 10th International Conference on Electronic Measurement Instruments, vol. 3, pp. 143–146, August 2011Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer and Control EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Basic Course TeachingBeijing Union UniversityBeijingChina
  4. 4.Dean’s officeBeijing Union UniversityBeijingChina

Personalised recommendations