Advertisement

Viscoelastic Crustal Deformation Computation Method with Reduced Random Memory Accesses for GPU-Based Computers

  • Takuma Yamaguchi
  • Kohei Fujita
  • Tsuyoshi Ichimura
  • Anne Glerum
  • Ylona van Dinther
  • Takane Hori
  • Olaf Schenk
  • Muneo Hori
  • Lalith Wijerathne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10861)

Abstract

The computation of crustal deformation following a given fault slip is important for understanding earthquake generation processes and reduction of damage. In crustal deformation analysis, reflecting the complex geometry and material heterogeneity of the crust is important, and use of large-scale unstructured finite-element method is suitable. However, since the computation area is large, its computation cost has been a bottleneck. In this study, we develop a fast unstructured finite-element solver for GPU-based large-scale computers. By computing several times steps together, we reduce random access, together with the use of predictors suitable for viscoelastic analysis to reduce the total computational cost. The developed solver enabled 2.79 times speedup from the conventional solver. We show an application example of the developed method through a viscoelastic deformation analysis of the Eastern Mediterranean crust and mantle following a hypothetical M 9 earthquake in Greece by using a 2,403,562,056 degree-of-freedom finite-element model.

Keywords

CUDA Finite element analysis Conjugate gradient method 

References

  1. 1.
    Agata, R., Ichimura, T., Hirahara, K., Hyodo, M., Hori, T., Hori, M.: Robust and portable capacity computing method for many finite element analyses of a high-fidelity crustal structure model aimed for coseismic slip estimation. Comput. Geosci. 94, 121–130 (2016)CrossRefGoogle Scholar
  2. 2.
    Bird, P.: An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4(3), 1027 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brizzi, S., van Zelst, I., van Dinther, Y., Funiciello, F., Corbi, F.: How long-term dynamics of sediment subduction controls short-term dynamics of seismicity. In: American Geophysical Union (2017)Google Scholar
  4. 4.
  5. 5.
    Fujita, K., Katsushima, K., Ichimura, T., Hori, M., Maddegedara, L.: Octree-based multiple-material parallel unstructured mesh generation method for seismic response analysis of soil-structure systems. Procedia Comput. Sci. 80, 1624–1634 (2016). 2016 International Conference on Computational Science, ICCS 2016, 6–8 June 2016, San Diego, California, USACrossRefGoogle Scholar
  6. 6.
    Fujita, K., Katsushima, K., Ichimura, T., Horikoshi, M., Nakajima, K., Hori, M., Maddegedara, L.: Wave propagation simulation of complex multi-material problems with fast low-order unstructured finite-element meshing and analysis. In: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2018, pp. 24–35. ACM, New York (2018)Google Scholar
  7. 7.
    Fujita, K., Yamaguchi, T., Ichimura, T., Hori, M., Maddegedara, L.: Acceleration of element-by-element kernel in unstructured implicit low-order finite-element earthquake simulation using OpenACC on Pascal GPUs. In: Proceedings of the Third International Workshop on Accelerator Programming Using Directives, pp. 1–12. IEEE Press (2016)Google Scholar
  8. 8.
    Fukahata, Y., Matsu’ura, M.: Quasi-static internal deformation due to a dislocation source in a multilayered elastic/viscoelastic half-space and an equivalence theorem. Geophys. J. Int. 166(1), 418–434 (2006)CrossRefGoogle Scholar
  9. 9.
    Hori, T., Hyodo, M., Miyazaki, S., Kaneda, Y.: Numerical forecasting of the time interval between successive M8 earthquakes along the Nankai Trough, Southwest Japan, using ocean bottom cable network data. Mar. Geophys. Res. 35(3), 285–294 (2014)CrossRefGoogle Scholar
  10. 10.
    Ichimura, T., Agata, R., Hori, T., Hirahara, K., Hashimoto, C., Hori, M., Fukahata, Y.: An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model. Geophys. J. Int. 206(1), 114–129 (2016)CrossRefGoogle Scholar
  11. 11.
    Masterlark, T.: Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic, poisson-solid, and half-space assumptions. J. Geophys. Res. Solid Earth 108(B11) (2003)Google Scholar
  12. 12.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40–53 (2008)CrossRefGoogle Scholar
  13. 13.
    Winget, J.M., Hughes, T.J.R.: Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies. Comput. Methods Appl. Mech. Eng. 52(1–3), 711–815 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Takuma Yamaguchi
    • 1
  • Kohei Fujita
    • 1
    • 2
  • Tsuyoshi Ichimura
    • 1
    • 2
  • Anne Glerum
    • 3
  • Ylona van Dinther
    • 4
  • Takane Hori
    • 5
  • Olaf Schenk
    • 6
  • Muneo Hori
    • 1
    • 2
  • Lalith Wijerathne
    • 1
    • 2
  1. 1.Department of Civil Engineering, Earthquake Research InstituteThe University of TokyoBunkyoJapan
  2. 2.Advanced Institute for Computational Science, RIKENKobeJapan
  3. 3.Helmholtz-Centre Potsdam, GFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Institute of GeophysicsETH ZurichZurichSwitzerland
  5. 5.Research and Development Center for Earthquake and TsunamiJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  6. 6.Faculty of InformaticsUniversità della Svizzera italianaLuganoSwitzerland

Personalised recommendations