Advertisement

Sparse Surface Speed Evaluation on a Dynamic Three-Dimensional Surface Using an Iterative Partitioning Scheme

  • Paul Manstetten
  • Lukas Gnam
  • Andreas Hössinger
  • Siegfried Selberherr
  • Josef Weinbub
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

We focus on a surface evolution problem where the local surface speed depends on a computationally expensive scalar function with non-local properties. The local surface speed must be re-evaluated in each time step, even for non-moving parts of the surface, due to possibly changed properties in remote regions of the simulation domain. We present a method to evaluate the surface speed only on a sparse set of points to reduce the computational effort. This sparse set of points is generated according to application-specific requirements using an iterative partitioning scheme. We diffuse the result of a constant extrapolation in the neighborhood of the sparse points to obtain an approximation to a linear interpolation between the sparse points.

We demonstrate the method for a surface evolving with a local surface speed depending on the incident flux from a source plane above the surface. The obtained speedups range from 2 to 8 and the surface deviation is less than 3 grid-cells for all evaluated test cases.

Keywords

Surface mesh Surface evolution Interpolation Robust Scalar Sparse evaluation 

Notes

Acknowledgment

The financial support by the Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development is gratefully acknowledged.

Supplementary material

References

  1. 1.
    Bronshtein, I., Semendyayev, K., Musiol, G., Mühlig, H.: Handbook of Mathematics, vol. 5. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72122-2CrossRefzbMATHGoogle Scholar
  2. 2.
    Cheong, H.W., Lee, W.H., Kim, J.W., Kim, W.S., Whang, K.W.: A study on reactive ion etching lag of a high aspect ratio contact hole in a magnetized inductively coupled plasma. Plasma Sources Sci. Technol. 23(6), 065051 (2014)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Hoetzlein, R.K.: GVDB: raytracing sparse voxel database structures on the GPU. In: Proceedings of High Performance Graphics, pp. 109–117 (2016)Google Scholar
  5. 5.
    Lee, C., Dolbow, J., Mucha, P.J.: A narrow-band gradient-augmented level set method for multiphase incompressible flow. J. Comput. Phys. 273, 12–37 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Manstetten, P., Weinbub, J., Hössinger, A., Selberherr, S.: Using temporary explicit meshes for direct flux calculation on implicit surfaces. Procedia Comput. Sci. 108, 245–254 (2017)CrossRefGoogle Scholar
  7. 7.
    Museth, K.: VDB: high-resolution sparse volumes with dynamic topology. ACM Trans. Graph. 32(3), 27:1–27:22 (2013)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Silvaco Inc: Victory Process - 3D Process Simulator. http://www.silvaco.com/products/tcad/process_simulation/victory_process
  10. 10.
    Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: a kernel framework for efficient CPU ray tracing. ACM Trans. Graph. 33(4), 143 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Paul Manstetten
    • 1
  • Lukas Gnam
    • 1
  • Andreas Hössinger
    • 2
  • Siegfried Selberherr
    • 3
  • Josef Weinbub
    • 1
  1. 1.Christian Doppler Laboratory for High Performance TCAD, Institute for MicroelectronicsTU WienViennaAustria
  2. 2.Silvaco Europe Ltd.St IvesUK
  3. 3.Institute for MicroelectronicsTU WienViennaAustria

Personalised recommendations