Advertisement

Understanding Malaria Induced Red Blood Cell Deformation Using Data-Driven Lattice Boltzmann Simulations

  • Joey Sing Yee Tan
  • Gábor Závodszky
  • Peter M. A. Sloot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Malaria remains a deadly disease that affected millions of people in 2016. Among the five Plasmodium (P.) parasites which contribute to malaria diseases in humans. P. falciparum is a lethal one which is responsible for the majority of the world-wide-malaria-related deaths. Since the banana-shaped stage V gametocytes play a crucial role in disease transmission, understanding the deformation of single stage V gametocytes may offer deeper insights into the development of the disease and provide possible targets for new treatment methods. In this study we used lattice Boltzmann-based simulations to investigate the effects of the stretching forces acting on infected red blood cells inside a slit-flow cytometer. The parameters that represent the cellular deformability of healthy and malaria infected red blood cells are chosen such that they mimic the deformability of these cells in a slit-flow cytometer. The simulation results show good agreement with experimental data and allow for studying the transportation of malaria infected red blood cell in blood circulation.

Keywords

Malaria-infected red blood cells Lattice Boltzmann Stage V gametocyte 

References

  1. 1.
    Aingaran, M., Zhang, R., Law, S.K., Peng, Z., Undisz, A., Meyer, E., Diez-Silva, M., Burke, T.A., Spielmann, T., Lim, C.T., Suresh, S., Dao, M., Marti, M.: Host cell deformability is linked to transmission in the human malaria parasite P. falciparum. Cell. Microbiol. 14(7), 983–993 (2012)CrossRefGoogle Scholar
  2. 2.
    Alowayyed, S., Závodszky, G., Azizi, V., Hoekstra, A.G.: Load balancing of parallel cell-based blood flow simulations. J. Comput. Sci. 24, 1–7 (2018)CrossRefGoogle Scholar
  3. 3.
    Artoli, A.M.M., Hoekstra, A.G., Sloot, P.M.A.: 3D pulsatile flow with the lattice Boltzmann BGK method. Int. J. Mod. Phys. C 13(8), 1119–1134 (2002)CrossRefGoogle Scholar
  4. 4.
    Artoli, A.M.M., Hoekstra, A.G., Sloot, P.M.A.: Simulation of a systolic cycle in a realistic artery with the lattice Boltzmann BGK method. Int. J. Mod. Phys. C 17(1 en 2), 95–98 (2003)CrossRefGoogle Scholar
  5. 5.
    Axner, L., Hoekstra, A.G., Sloot, P.M.A.: Simulating time harmonic flows with the lattice Boltzmann method. Phys. Rev. E 75, 036709 (2007)CrossRefGoogle Scholar
  6. 6.
    Bernaschi, M., Fatica, M., Melchionna, S., Succi, S., Kaxiras, E.: A flexible high-performance lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries. Concurr. Comput.: Pract. Exp. 22(1), 1–14 (2010)CrossRefGoogle Scholar
  7. 7.
    Dixon, M.W., Dearnley, M.K., Hanssen, E., Gilberger, T., Tilley, L.: Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends Parasitol. 28(11), 471–478 (2012)CrossRefGoogle Scholar
  8. 8.
    Dearnley, M.K., Yeoman, J.A., Hanssen, E., Kenny, S., Turnbull, L., Whitchurch, C.B., Tilley, L., Dixon, M.W.: Origin, composition, organization and function of the inner membrane complex of P. falciparum gametocytes. J. Cell Sci. 125(Pt 8), 2053–2063 (2012)CrossRefGoogle Scholar
  9. 9.
    Eggleton, C.D., Popel, A.S.: Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10(8), 1834–1845 (1998)CrossRefGoogle Scholar
  10. 10.
    Goergen, C.J., Shadden, S.C., Marsden, A.L.: SimVascular as an instructional tool in the classroom. In: 2017 IEEE Frontiers in Education Conference (FIE), Indianapolis, IN, pp. 1–4 (2017)Google Scholar
  11. 11.
    Gross, M., Krüger, T., Varnik, F.: Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10, 4360–4372 (2014)CrossRefGoogle Scholar
  12. 12.
    Hanssen, E., Knoechel, C., Dearnley, M., Dixon, M.W., Le Gros, M., Larabell, C., Tilley, L.: Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J. Struct. Biol. 177(2), 224–232 (2011)CrossRefGoogle Scholar
  13. 13.
    Hawking, F., Gammage, K., Worms, M.J.: Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 65(5), 549–559 (1971)CrossRefGoogle Scholar
  14. 14.
    Heldt, T., Mukkamala, R., Moody, G.B., Mark, R.G.: CVSim: an open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol. Ther. J. 3, 45–54 (2011)Google Scholar
  15. 15.
    Hoekstra, A.G., Alowayyed, S., Lorenz, E., Melnikova, N., Mountrakis, L., van Booij, B., et al.: Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface. Philos. Trans. R. Soc. A 374, 20160146 (2016)CrossRefGoogle Scholar
  16. 16.
    Kaandorp, J.A., Lowe, C.P., Frenkel, D., Sloot, P.M.A.: The effect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett. 77(11), 2328–2331 (1996)CrossRefGoogle Scholar
  17. 17.
    Kandhai, D., Koponen, A., Hoekstra, A.G., Kataja, M., Timonen, J., Sloot, P.M.A.: Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111(1–3), 14–26 (1998)CrossRefGoogle Scholar
  18. 18.
    Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Krüger, T., Gross, M., Raabe, D., Varnik, F.: Crossover from tumbling to tank-threading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9, 9008–9015 (2013)CrossRefGoogle Scholar
  20. 20.
    Krüger, T.: Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol. Acta 55, 511–526 (2016)CrossRefGoogle Scholar
  21. 21.
    Laveran, A.: A new parasite found in the blood of malarial patients. Parasitic origin of malarial attacks. Bull. Mem. Soc. Med. Hop. Paris 17, 158–164 (1880)Google Scholar
  22. 22.
    Lavazec, C., Alano, P.: Uncovering the hideout of malaria sexual parasites. Blood 123(7), 954–955 (2014)CrossRefGoogle Scholar
  23. 23.
    Moon, D., Bur, A.J., Migler, K.B.: Multi-sample micro-slit rheometry. J. Rheol. 52(2), 1131–1142 (2008)CrossRefGoogle Scholar
  24. 24.
    Pan, C., Prins, J.F., Miller, C.T.: A high-performance lattice Boltzmann implementation to model flow in porous media. Comput. Phys. Commun. 158(2), 89–105 (2004)CrossRefGoogle Scholar
  25. 25.
    Radosinska, J., Vrbjar, N.: The role of red blood cell deformability and Na, K-ATPase function in selected risk factors of cardiovascular disease in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia. Physiol. Res. 65(Suppl. 1), 43–54 (2016)Google Scholar
  26. 26.
    Salmon, R.: The lattice Boltzmann method as a basis for ocean circulation modeling. J. Mar. Res. 57, 503–535 (1999)CrossRefGoogle Scholar
  27. 27.
    Sinden, R.E.: Sexual development of malarial parasites. Adv. Parasitol. 22, 153–216 (1983)CrossRefGoogle Scholar
  28. 28.
    Tiburcio, M., Niang, M., Deplaine, G., Perrot, S., Bischoff, E., Ndour, P.A., Silvestrini, F., Khattab, A., Milon, G., David, P.H., Harderman, M., Vernick, K.D., Sauerwein, R.W., Preiser, P.R., Mercereau-Puijalon, O., Buffet, P., Alano, P., Lavazec, C.: A switch in infected erythrocyte deformability at the maturation and blood circulation of P. falciparum transmission stages. Blood 119(24), e172–e180 (2012)CrossRefGoogle Scholar
  29. 29.
    Thommes, G., Sea, M., Banda, M.K.: Lattice Boltzmann methods for shallow water flow applications. Int. J. Numer. Methods Fluids 55(7), 673–692 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tomaiuolo, G.: Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8(5), 051501 (2014)CrossRefGoogle Scholar
  31. 31.
    Tran, N.-P., Lee, M., Hong, S.: Performance optimization of 3D lattice Boltzmann flow solver on a GPU. Sci. Program. 2017, 1–16 (2017)Google Scholar
  32. 32.
    Tubbs, K.R., Tsai, F.T.C.: Multilayer shallow water flow using lattice Boltzmann method with high performance computing. Adv. Water Resour. 32(12), 1767–1776 (2009)CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Závodszky, G., van Rooij, B., Azizi, V., Hoekstra, A.: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Front. Physiol. 8, 563 (2017)CrossRefGoogle Scholar
  35. 35.
    Zhong, L., Feng, S., Lou, D., Gao, S.: Wind-driven, double-gyre, ocean circulation in a reduced-gravity, 2.5-layer, lattice Boltzmann model. Adv. Atmos. Sci. 23(4), 561–578 (2006)CrossRefGoogle Scholar
  36. 36.
    Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: Numerical prediction of dam-break flows in general geometries with complex bed topography. J. Hydraul. Eng. 130(4), 332–340 (2004)CrossRefGoogle Scholar
  37. 37.
    Zhou, J.G.: Lattice Boltzmann simulations of discontinuous flows. Int. J. Mod. Phys. C: Comput. Phys. Phys. Comput. 18(1), 1–14 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joey Sing Yee Tan
    • 1
  • Gábor Závodszky
    • 2
  • Peter M. A. Sloot
    • 1
    • 3
    • 4
  1. 1.Complexity InstituteNanyang Technological UniversitySingaporeSingapore
  2. 2.Computational Science Laboratory, Faculty of Science, Institute for InformaticsUniversity of AmsterdamAmsterdamNetherlands
  3. 3.Computational ScienceUniversity of AmsterdamAmsterdamNetherlands
  4. 4.National Research University ITMOSt. PetersburgRussia

Personalised recommendations