Advertisement

Spiral Wave Drift Induced by High-Frequency Forcing. Parallel Simulation in the Luo–Rudy Anisotropic Model of Cardiac Tissue

  • Timofei EpanchintsevEmail author
  • Sergei Pravdin
  • Alexander Panfilov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Non-linear waves occur in various physical, chemical and biological media. One of the most important examples is electrical excitation waves in the myocardium, which initiate contraction of the heart. Abnormal wave propagation in the heart, such as the formation of spiral waves, causes dangerous arrhythmias, and thus methods of elimination of such waves are of great interest. One of the most promising methods is so-called low-voltage cardioversion and defibrillation, which is believed to be achieved by inducing the drift and disappearance of spiral waves using external high-frequency electrical stimulation of the heart. In this paper, we perform a computational analysis of the interaction of spiral waves and trains of high-frequency plane waves in 2D models of cardiac tissue. We investigate the effectiveness and safety of the treatment. We also identify the dependency of drift velocity on the period of plane waves. The simulations were carried out using a parallel computing system with OpenMP technology.

Keywords

Anisotropy Spiral wave Overdrive pacing Heart model Low-voltage cardioversion Wave drift 

References

  1. 1.
    Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)CrossRefGoogle Scholar
  2. 2.
    Caldwell, B.J., Trew, M.L., Pertsov, A.M.: Cardiac response to low-energy field pacing challenges the standard theory of defibrillation. Circ. Arrhythm. Electrophysiol. 8(3), 685–693 (2004)CrossRefGoogle Scholar
  3. 3.
    Epanchintsev, T., Pravdin, S., Sozykin, A., Panfilov, A.: Simulation of overdrive pacing in 2D phenomenological models of anisotropic myocardium. Procedia Comput. Sci. 119, 245–254 (2017). Proceedings of the 6th International Young Scientists Conference in HPC and Simulation YSC 2017. Elsevier B.V., KotkaCrossRefGoogle Scholar
  4. 4.
    Ermakova, E.A., Krinsky, V.I., Panfilov, A.V., Pertsov, A.M.: Interaction between spiral and flat periodic autowaves in an active medium. Biofizika 31(2), 318–323 (1986). (in Russian)Google Scholar
  5. 5.
    Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos: Interdisc. J. Nonlinear Sci. 8(1), 20–47 (1998)CrossRefGoogle Scholar
  6. 6.
    Gottwald, G., Pumir, A., Krinsky, V.: Spiral wave drift induced by stimulating wave trains. Chaos: Interdisc. J. Nonlinear Sci. 11(3), 487–494 (2001)CrossRefGoogle Scholar
  7. 7.
    Hornung, D., Biktashev, V.N., Otani, N.F., Shajahan, T.K., Baig, T., Berg, S., Han, S., Krinsky, V.I., Luther, S.: Mechanisms of vortices termination in the cardiac muscle. R. Soc. Open Sci. 4(3), 170024 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Keener, J.P., Panfilov, A.V.: A biophysical model for defibrillation of cardiac tissue. Biophys. J. 71(3), 1335–45 (1996)CrossRefGoogle Scholar
  9. 9.
    Kheowan, O.-U., Chan, C.-K., Zykov, V.S., Rangsiman, O., Müller, S.C.: Spiral wave dynamics under feedback derived from a confined circular domain. Phys. Rev. E 64, 035201 (2001)CrossRefGoogle Scholar
  10. 10.
    Krinsky, V.I., Agladze, K.I.: Interaction of rotating waves in an active chemical medium. Phys. D 8(1), 50–56 (1983)CrossRefGoogle Scholar
  11. 11.
    Li, W., Ripplinger, C.M., Lou, Q., Efimov, I.R.: Multiple monophasic shocks improve electrotherapy of ventricular tachycardia in a rabbit model of chronic infarction. Heart Rhythm 6(7), 1020–1027 (2009)CrossRefGoogle Scholar
  12. 12.
    Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRefGoogle Scholar
  13. 13.
    Markhasin, V.S., Solovyova, O., Katsnelson, L.B., Protsenko, Y., Kohl, P., Noble, D.: Mechano-electric interactions in heterogeneous myocardium: development of fundamental experimental and theoretical models. Prog. Biophys. Mol. Biol. 82(1), 207–220 (2003)CrossRefGoogle Scholar
  14. 14.
    Mena, A., Ferrero, J.M., Rodriguez, J.F.: Computer simulation of the electric activity of the heart using GPU. A multi-scale approach. In: Proceedings of the 41st International Congress on Electrophysiology ICE 2014, Bratislava, Slovakia (2014)Google Scholar
  15. 15.
    Nakazawa, K., Suzuki, T., Ashihara, T., Inagaki, M., Namba, T., Ikeda, T., Suzuki, R.: Computational analysis and visualization of spiral wave reentry in a virtual heart model. In: Yamaguchi, T. (ed.) Clinical Application of Computational Mechanics to the Cardiovascular System, pp. 217–241. Springer, Tokyo (2000).  https://doi.org/10.1007/978-4-431-67921-9_21CrossRefGoogle Scholar
  16. 16.
    Pravdin, S.F., Dierckx, H., Panfilov, A.V.: Effect of the form and anisotropy of the left ventricle on the drift of spiral waves. Biophysics 62(2), 309–311 (2017)CrossRefGoogle Scholar
  17. 17.
    Pravdin, S., Ushenin, K., Sozykin, A., Solovyova, O.: Human heart simulation software for parallel computing systems. Procedia Comput. Sci. 66(Suppl. C), 402–411 (2015). 4th International Young Scientist Conference on Computational ScienceCrossRefGoogle Scholar
  18. 18.
    Pravdin, S.F., Nezlobinsky, T.V., Panfilov, A.V.: Modelling of low-voltage cardioversion using 2D isotropic models of the cardiac tissue. In: Proceedings of the International Conference Days on Diffraction 2017, Saint-Petersburg, Russia, pp. 276–281 (2017)Google Scholar
  19. 19.
    Sato, D., Xie, Y., Weiss, J.N., Zhilin, Q., Garfinkel, A., Sanderson, A.R.: Acceleration of cardiac tissue simulation with graphic processing units. Med. Biol. Eng. Comput. 47(9), 1011–1015 (2009)CrossRefGoogle Scholar
  20. 20.
    Sinha, S., Sridhar, S.: Patterns in Excitable Media: Genesis, Dynamics, and Control. Taylor & Francis, London (2014)Google Scholar
  21. 21.
    Sweeney, M.O.: Antitachycardia pacing for ventricular tachycardia using implantable cardioverter defibrillators. Pacing Clin. Electrophysiol. 27(9), 1292–1305 (2004)CrossRefGoogle Scholar
  22. 22.
    Ten Tusscher, K.H.W.J., Panfilov, A.V.: Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model. Am. J. Physiol. Heart Circ. Physiol. 284(2), H542–H548 (2003)CrossRefGoogle Scholar
  23. 23.
    Ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), 1088–1100 (2006)CrossRefGoogle Scholar
  24. 24.
    Wathen, M.S., et al.: Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators. Circulation 110(17), 2591–2596 (2004)CrossRefGoogle Scholar
  25. 25.
    Weinberg, S.H., Chang, K.C., Zhu, R., Tandri, H., Berger, R.D., Trayanova, N.A., Tung, L.: Defibrillation success with high frequency electric fields is related to degree and location of conduction block. Heart Rhythm 10(5), 740–748 (2013)CrossRefGoogle Scholar
  26. 26.
    Wenckebach, K.F.: De analyse van den onregelmatigen Pols. III. Over eenige Vormen van Allorythmie en Bradykardie. Nederlandsch Tijdschrift voor Geneeskunde, Amsterdam, vol. 2 (1898). (in Dutch)Google Scholar
  27. 27.
    Zhang, H., Bambi, H., Gang, H.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68, 026134 (2003)CrossRefGoogle Scholar
  28. 28.
    Zykov, V.S., Mikhailov, A.S., Müller, S.C.: Controlling spiral waves in confined geometries by global feedback. Phys. Rev. Lett. 78, 3398–3401 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Timofei Epanchintsev
    • 1
    • 2
    Email author
  • Sergei Pravdin
    • 1
    • 2
  • Alexander Panfilov
    • 3
  1. 1.Krasovskii Institute of Mathematics and MechanicsEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia
  3. 3.Ghent UniversityGhentBelgium

Personalised recommendations