Advertisement

A Distance-Based Tool-Set to Track Inconsistent Urban Structures Through Complex-Networks

  • Gabriel Spadon
  • Bruno B. Machado
  • Danilo M. Eler
  • Jose F. RodriguesJr.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Complex networks can be used for modeling street meshes and urban agglomerates. With such a model, many aspects of a city can be investigated to promote a better quality of life to its citizens. Along these lines, this paper proposes a set of distance-based pattern-discovery algorithmic instruments to improve urban structures modeled as complex networks, detecting nodes that lack access from/to points of interest in a given city. Furthermore, we introduce a greedy algorithm that is able to recommend improvements to the structure of a city by suggesting where points of interest are to be placed. We contribute to a thorough process to deal with complex networks, including mathematical modeling and algorithmic innovation. The set of our contributions introduces a systematic manner to treat a recurrent problem of broad interest in cities.

Keywords

Complex network Network analysis Urban structure 

Notes

Acknowledgment

We would like to thank the Brazilian agencies CNPq (167967/2017-7), FAPESP (2016/17078-0 and 2017/08376-0) and CAPES that fully supported this research.

References

  1. 1.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Porta, S., Latora, V., Wang, F., Strano, E., Cardillo, A., Scellato, S., Iacoviello, V., Messora, R.: Street centrality and densities of retail and services in Bologna, Italy. Environ. Plan. B: Plan. Des. 36(3), 450–465 (2009)CrossRefGoogle Scholar
  3. 3.
    Masucci, A.P., Stanilov, K., Batty, M.: Limited urban growth: London’s street network dynamics since the 18th century. PLoS One 8(8), e69469 (2013)CrossRefGoogle Scholar
  4. 4.
    Kaczynski, A.T., Koohsari, M.J., Stanis, S.A.W., Bergstrom, R., Sugiyama, T.: Association of street connectivity and road traffic speed with park usage and park-based physical activity. Am. J. Health Promot. 28(3), 197–203 (2014)CrossRefGoogle Scholar
  5. 5.
    Sopan, A., Rey, P.J., Shneiderman, B.: The dynamics of web-based community safety groups: lessons learned from the nation of neighbors. IEEE Sig. Process. Mag. 30(6), 157–162 (2013)CrossRefGoogle Scholar
  6. 6.
    Corcoran, P., Jilani, M., Mooney, P., Bertolotto, M: Inferring semantics from geometry. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2015. ACM (2015)Google Scholar
  7. 7.
    Barthélemy, M., Flammini, A.: Modeling urban street patterns. Phys. Rev. Lett. 100(13), 138702 (2008)CrossRefGoogle Scholar
  8. 8.
    Zhong, C., Arisona, S.M., Huang, X., Batty, M., Schmitt, G.: Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inf. Sci. 28(11), 2178–2199 (2014)CrossRefGoogle Scholar
  9. 9.
    Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban streets. Phys. Rev. E 73(3), 036125 (2006)CrossRefGoogle Scholar
  10. 10.
    Costa, L.F., Travençolo, B.A.N., Viana, M.P., Strano, E.: On the efficiency of transportation systems in large cities. EPL (Europhys. Lett.) 91(1), 18003 (2010)CrossRefGoogle Scholar
  11. 11.
    Strano, E., Nicosia, V., Latora, V., Porta, S., Barthélemy, M.: Elementary processes governing the evolution of road networks. Sci. Rep. 2, 296 (2012)CrossRefGoogle Scholar
  12. 12.
    Spadon, G., Gimenes, G., Rodrigues Jr, J.F.: Identifying urban inconsistencies via street networks. In: International Conference on Computational Science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland, vol. 108, pp. 18–27. Elsevier BV (2017)CrossRefGoogle Scholar
  13. 13.
    Li, X., Parrott, L.: An improved genetic algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 59, 184–194 (2016)CrossRefGoogle Scholar
  14. 14.
    Viana, M.P., Costa, L.F.: Fast long-range connections in transportation networks. Phys. Lett. A 375(15), 1626–1629 (2011)CrossRefGoogle Scholar
  15. 15.
    Travençolo, B., Costa, L.F.: Accessibility in complex networks. Phys. Lett. Sect. A: General, Atomic Solid State Phys. 373(1), 89–95 (2008)CrossRefGoogle Scholar
  16. 16.
    Crucitti, P., Latora, V., Porta, S.: Centrality in networks of urban streets. Chaos: an interdisciplinary. J. Nonlinear Sci. 16(1), 015113 (2006)MATHGoogle Scholar
  17. 17.
    Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a dual approach. Phys. A 369(2), 853–866 (2006)CrossRefGoogle Scholar
  18. 18.
    Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns. Phys. Rev. E 73(6), 066107 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Sao PauloSao CarlosBrazil
  2. 2.Federal University of Mato Grosso do SulPonta PoraBrazil
  3. 3.Sao Paulo State UniversityPresidente PrudenteBrazil

Personalised recommendations