Advertisement

Topological Street-Network Characterization Through Feature-Vector and Cluster Analysis

  • Gabriel Spadon
  • Gabriel Gimenes
  • Jose F. RodriguesJr.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Complex networks provide a means to describe cities through their street mesh, expressing characteristics that refer to the structure and organization of an urban zone. Although other studies have used complex networks to model street meshes, we observed a lack of methods to characterize the relationship between cities by using their topological features. Accordingly, this paper aims to describe interactions between cities by using vectors of topological features extracted from their street meshes represented as complex networks. The methodology of this study is based on the use of digital maps. Over the computational representation of such maps, we extract global complex-network features that embody the characteristics of the cities. These vectors allow for the use of multidimensional projection and clustering techniques, enabling a similarity-based comparison of the street meshes. We experiment with 645 cities from the Brazilian state of Sao Paulo. Our results show how the joint of global features describes urban indicators that are deep-rooted in the network’s topology and how they reveal characteristics and similarities among sets of cities that are separated from each other.

Keywords

Network topology Feature vector Cluster analysis 

Notes

Acknowledgment

We are thankful to CNPq (grant 167967/2017-7), FAPESP (grants 2014/25337-0, 2016/17078-0 and 2017/08376-0) and CAPES that supported this research.

References

  1. 1.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Masucci, A.P., Stanilov, K., Batty, M.: Limited urban growth: London’s street network dynamics since the 18th century. PLoS ONE 8(8), 1–10 (2013)CrossRefGoogle Scholar
  3. 3.
    Blumer, H.: Social problems as collective behavior. Soc. Probl. 18(3), 298–306 (1971)CrossRefGoogle Scholar
  4. 4.
    Anderson, T.K.: Kernel density estimation and K-means clustering to profile road accident hotspots. Accid. Anal. Prev. 41(3), 359–364 (2009)CrossRefGoogle Scholar
  5. 5.
    Grauwin, S., Sobolevsky, S., Moritz, S., Gódor, I., Ratti, C.: Towards a comparative science of cities: using mobile traffic records in New York, London, and Hong Kong. In: Helbich, M., Jokar Arsanjani, J., Leitner, M. (eds.) Computational Approaches for Urban Environments. GE, vol. 13, pp. 363–387. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-11469-9_15CrossRefGoogle Scholar
  6. 6.
    Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban streets. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 73(3), 1–6 (2006)CrossRefGoogle Scholar
  7. 7.
    Costa, L.F., Travençolo, B.A.N., Viana, M.P., Strano, E.: On the efficiency of transportation systems in large cities. EPL (Europhys. Lett.) 91(1), 1–10 (2010)CrossRefGoogle Scholar
  8. 8.
    Porta, S., Latora, V., Wang, F., Strano, E., Cardillo, A., Scellato, S., Iacoviello, V., Messora, R.: Street centrality and densities of retail and services in Bologna, Italy. Environ. Plan. B: Plan. Des. 36(3), 450–465 (2009)CrossRefGoogle Scholar
  9. 9.
    Strano, E., Nicosia, V., Latora, V., Porta, S., Barthélemy, M.: Elementary processes governing the evolution of road networks. Sci. Rep. 2, 1–8 (2012)CrossRefGoogle Scholar
  10. 10.
    Spadon, G., Gimenes, G., Rodrigues-Jr., J.F.: Identifying urban inconsistencies via street networks. In: International Conference on Computational Science, ICCS 2017, 12–14 June 2017, Zurich, Switzerland, vol. 108, pp. 18–27. Elsevier (2017)CrossRefGoogle Scholar
  11. 11.
    Li, X., Parrott, L.: An improved genetic algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 59, 184–194 (2016)CrossRefGoogle Scholar
  12. 12.
    Strano, E., Viana, M., Costa, L.F., Cardillo, A., Porta, S., Latora, V.: Urban street networks, a comparative analysis of ten European cities. Environ. Plan. B: Plan. Des. 40(6), 1071–1086 (2013)CrossRefGoogle Scholar
  13. 13.
    Domingues, G.S., Silva, F.N., Comin, C.H., Costa, L.F.: Topological characterization of world cities. arXiv preprint arXiv:1709.08244 (2017)
  14. 14.
    Pan, G., Qi, G., Zhang, W., Li, S., Wu, Z., Yang, L.T.: Trace analysis and mining for smart cities: issues, methods, and applications. IEEE Commun. Mag. 51(6), 120–126 (2013)CrossRefGoogle Scholar
  15. 15.
    Scripps, J., Nussbaum, R., Tan, P.N., Esfahanian, A.H.: Link-based network mining. In: Dehmer, M. (ed.) Structural Analysis of Complex Networks, pp. 403–419. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-0-8176-4789-6_16CrossRefGoogle Scholar
  16. 16.
    Chiang, C.: Statistical Methods of Analysis. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  17. 17.
    Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)CrossRefGoogle Scholar
  18. 18.
    Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17(1), 57–63 (1995)CrossRefGoogle Scholar
  19. 19.
    Brath, R., Jonker, D.: Graph Analysis and Visualization: Discovering Business Opportunity in Linked Data. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  20. 20.
    Spiwok, V., Oborský, P., Pazúriková, J., Kenek, A., Králová, B.: Nonlinear vs. linear biasing in trp-cage folding simulations. J. Chem. Phys. 142(11), 1–8 (2015)CrossRefGoogle Scholar
  21. 21.
    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  22. 22.
    Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., Pfahringer, B.: An effective evaluation measure for clustering on evolving data streams. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 868–876. ACM, New York (2011)Google Scholar
  23. 23.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)CrossRefGoogle Scholar
  24. 24.
    Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 142(1), 95–104 (1974)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Sao PauloSao CarlosBrazil

Personalised recommendations