Advertisement

On the Configuration of Robust Static Parallel Portfolios for Efficient Plan Generation

  • Mauro Vallati
  • Lukáš Chrpa
  • Diane Kitchin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Automated Planning has achieved a significant step forward in the last decade, and many advanced planning engines have been introduced. Nowadays, increases in computational power are mostly achieved through hardware parallelisation. In view of the increasing availability of multicore machines and of the intrinsic complexity of designing parallel algorithms, a natural exploitation of parallelism is to combine existing sequential planning engines into parallel portfolios.

In this work, we introduce three techniques for an automatic configuration of static parallel portfolios of planning engines. The aim of generated portfolios is to provide a good tradeoff performance between coverage and runtime, on previously unseen problems. Our empirical results demonstrate that our techniques for configuring parallel portfolios combine strengths of planning engines, and fully exploit multicore machines.

Keywords

Automated planning Parallel portfolio Portfolio configuration 

Notes

Acknowledgements

Research was partially funded by the Czech Science Foundation (project no. 17-17125Y).

References

  1. 1.
    Balyo, T., Sanders, P., Sinz, C.: HordeSat: a massively parallel portfolio SAT solver. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 156–172. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24318-4_12CrossRefzbMATHGoogle Scholar
  2. 2.
    Cenamor, I., de la Rosa, T., Fernández, F.: The ibacop planning system: instance-based configured portfolios. J. Artif. Intell. Res. 56, 657–691 (2016)MathSciNetGoogle Scholar
  3. 3.
    Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., Leyton-Brown, K.: Improved features for runtime prediction of domain-independent planners. In: Proceedings of ICAPS (2014)Google Scholar
  4. 4.
    Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs. J. Artif. Intell. Res. (JAIR) 20, 239–290 (2003)zbMATHGoogle Scholar
  5. 5.
    Gerevini, A., Saetti, A., Vallati, M.: Planning through automatic portfolio configuration: the PbP approach. J. Artif. Intell. Res. (JAIR) 50, 639–696 (2014)zbMATHGoogle Scholar
  6. 6.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice. Morgan Kaufmann, Burlington (2004)zbMATHGoogle Scholar
  7. 7.
    Hamadi, Y., Wintersteiger, C.: Seven challenges in parallel SAT solving. AI Mag. 34(2), 99–106 (2013)CrossRefGoogle Scholar
  8. 8.
    Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)CrossRefGoogle Scholar
  9. 9.
    Helmert, M., Röger, G., Karpas, E.: Fast downward stone soup: a baseline for building planner portfolios. In: Proceedings of the PAL Workshop (2011)Google Scholar
  10. 10.
    Hoffmann, J.: The metric-ff planning system: translating “ignoring delete lists” to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)zbMATHGoogle Scholar
  11. 11.
    Howe, A.E., Dahlman, E.: A critical assessment of benchmark comparison in planning. J. Artif. Intell. Res. (JAIR) 17, 1–33 (2002)zbMATHGoogle Scholar
  12. 12.
    Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. CoRR abs/1210.7959 (2012). http://arxiv.org/abs/1210.7959
  13. 13.
    Lindauer, M., Hoos, H., Hutter, F.: From sequential algorithm selection to parallel portfolio selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 1–16. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19084-6_1CrossRefGoogle Scholar
  14. 14.
    Núñez, S., Borrajo, D., Linares López, C.: Automatic construction of optimal static sequential portfolios for AI planning and beyond. Artif. Intell. 226, 75–101 (2015)CrossRefGoogle Scholar
  15. 15.
    Núñez, S., Borrajo, D., Linares López, C.: Sorting sequential portfolios in automated planning. In: Proceedings of IJCAI, pp. 1638–1644 (2015)Google Scholar
  16. 16.
    Richter, S., Westphal, M.: The lama planner: guiding cost-based anytime planning with landmarks. J. Artif. Intell. Res. 39, 127–177 (2010)zbMATHGoogle Scholar
  17. 17.
    Seipp, J., Braun, M., Garimort, J., Helmert, M.: Learning portfolios of automatically tuned planners. In: Proceedings of ICAPS, pp. 369–372 (2012)Google Scholar
  18. 18.
    Seipp, J., Sievers, S., Helmert, M., Hutter, F.: Automatic configuration of sequential planning portfolios. In: Proceedings of AAAI, pp. 3364–3370 (2015)Google Scholar
  19. 19.
    Vallati, M., Chrpa, L., Grzes, M., McCluskey, T., Roberts, M., Sanner, S.: The 2014 international planning competition: progress and trends. AI Mag. 36(3), 90–98 (2015)CrossRefGoogle Scholar
  20. 20.
    Vallati, M., Chrpa, L., Kitchin, D.: Portfolio-based planning: state of the art, common practice and open challenges. AI Commun. 28(4), 717–733 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vallati, M., Chrpa, L., McCluskey, T.: Description of participating planners. In: Proceedings of the 8th International Planning Competition (IPC-2014) (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computing and EngineeringUniversity of HuddersfieldHuddersfieldUK
  2. 2.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  3. 3.Artificial Intelligence CenterCzech Technical University in PraguePragueCzech Republic

Personalised recommendations