Advertisement

Multi-population Genetic Algorithm for Cardinality Constrained Portfolio Selection Problems

  • Nasser R. Sabar
  • Ayad Turky
  • Mark Leenders
  • Andy Song
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Portfolio Selection (PS) is recognized as one of the most important and challenging problems in financial engineering. The aim of PS is to distribute a given amount of investment fund across a set of assets in such a way that the return is maximised and the risk is minimised. To solve PS more effectively and more efficiently, this paper introduces a Multi-population Genetic Algorithm (MPGA) methodology. The proposed MPGA decomposes a large population into multiple populations to explore and exploit the search space simultaneously. These populations evolve independently during the evolutionary learning process. Yet different populations periodically exchange their individuals so promising genetic materials could be shared between different populations. The proposed MPGA method was evaluated on the standard PS benchmark instances. The experimental results show that MPGA can find better investment strategies in comparison with state-of-the-art portfolio selection methods. In addition, the search process of MPGA is more efficient than these existing methods requiring significantly less amount of computation.

Keywords

Optimisation Portfolio selection problems Genetic algorithms Multi-population GA 

References

  1. 1.
    Markowitz, H.: Portfolio selection*. J. Finan. 7(1), 77–91 (1952)Google Scholar
  2. 2.
    Varian, H.: A portfolio of nobel laureates: Markowitz, Miller and Sharpe. J. Econ. Perspect. 159–169 (1993)CrossRefGoogle Scholar
  3. 3.
    Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)CrossRefGoogle Scholar
  4. 4.
    Markowitz, H.M.: Portfolio selection: efficient diversification of investments, vol. 16. Yale University Press, New Haven (1968)Google Scholar
  5. 5.
    Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics, vol. 2. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Deng, G.-F., Lin, W.-T., Lo, C.-C.: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst. Appl. 39(4), 4558–4566 (2012)CrossRefGoogle Scholar
  7. 7.
    Sabar, N.R., Kendall, G.: Using harmony search with multiple pitch adjustment operators for the portfolio selection problem. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 499–503. IEEE (2014)Google Scholar
  8. 8.
    Kendall, G., Yan, S.: Imperfect evolutionary systems. IEEE Trans. Evol. Comput. 11(3), 294–307 (2007)CrossRefGoogle Scholar
  9. 9.
    Fernández, A., Gómez, S.: Portfolio selection using neural networks. Comput. Oper. Res. 34(4), 1177–1191 (2007)CrossRefGoogle Scholar
  10. 10.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press, Oxford (1975)Google Scholar
  11. 11.
    Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)CrossRefGoogle Scholar
  12. 12.
    Moral-Escudero, R., Ruiz-Torrubiano, R., Suárez, A.: Selection of optimal investment portfolios with cardinality constraints. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 2382–2388. IEEE (2006)Google Scholar
  13. 13.
    Sabar, N.R., Aleti, A.: An adaptive memetic algorithm for the architecture optimisation problem. In: Wagner, M., Li, X., Hendtlass, T. (eds.) ACALCI 2017. LNCS (LNAI), vol. 10142, pp. 254–265. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51691-2_22CrossRefGoogle Scholar
  14. 14.
    Sabar, N.R., Song, A., Zhang, M.: A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 267–282. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31204-0_18CrossRefGoogle Scholar
  15. 15.
    Sabar, N.R., Abawajy, J., Yearwood, J.: Heterogeneous cooperative co-evolution memetic differential evolution algorithm for big data optimization problems. IEEE Trans. Evol. Comput. 21(2), 315–327 (2017)CrossRefGoogle Scholar
  16. 16.
    Sabar, N.R., Chung, E., Tsubota, T., Maciel de Almeida, P.E., et al.: A memetic algorithm for real world multi-intersection traffic signal optimisation problems. Eng. Appl. Artif. Intell. 63, 45–53 (2017)CrossRefGoogle Scholar
  17. 17.
    Abuhamdah, A., Ayob, M., Kendall, G., Sabar, N.R.: Population based local search for university course timetabling problems. Appl. Intell. 40(1), 44–53 (2014)CrossRefGoogle Scholar
  18. 18.
    Sabar, N.R., Song, A.: Dual population genetic algorithm for the cardinality constrained portfolio selection problem. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 703–712. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13563-2_59CrossRefGoogle Scholar
  19. 19.
    Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 1069–1072 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.La Trobe UniversityMelbourneAustralia
  2. 2.RMIT UniversityMelbourneAustralia

Personalised recommendations