Skip to main content

Discourse Transformed: Changing Modes of Argumentation

  • Chapter
  • First Online:
Nine Chapters on Mathematical Modernity

Abstract

Moving from the linguistic to the discursive level, this chapter examines the changing modes of argumentation and analyses the ways in which the authority of these modes of argumentation was built upon both Chinese philosophical and foreign elements. Whether it is inductive proof, visual tools, or arguments by analogy in number-theoretical contexts, new standards seem to emerge in nineteenth century due to the social pressure of claiming the validity of the obtained results. From a comparative and transcultural perspective, the chapter investigates in particular the Comparable Categories of Discrete Accumulations (Duoji bilei 垛積比類) by Li Shanlan (1811–1882), a Chinese mathematician who was familiar with foreign mathematical discourse through his translation work, and who systematically proceeded in his number-theoretical writings by “analogical extension” (leitui 類推), to infer from the particular to the universal. To conclude, the historiographic problem of claims about a specifically Western scientific rigour of inductive proofs in Blaise Pascal’s Traité du Triangle Arithmétique (1665) is questioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also: “Li Renshu Identity.” Renshu was the style name of Li Shanlan. See Horng (1991) p. 206.

  2. 2.

    See Martzloff (2006) p. 341–342.

  3. 3.

    See Zhang (1939).

  4. 4.

    For an extensive discussion of the strands of the Chinese tradition of considering piles of discrete objects in different geometric shapes as figured numbers, see Bréard (1999a). On figured numbers (and in extension, polygonal numbers) in the Greek tradition, see Diofanto (2011) p. 39–40.

  5. 5.

    These correspond to the coefficients \((C^{n+k}_k)^2\) for the values k = 1 and n = 0,  1,  2.

  6. 6.

    The squared triangular numbers correspond to the binomial coefficients \((C^{n+k}_k)^2\) for the values k = 2 and n = 0,  1,  2,  3.

  7. 7.

    Pólya (1954).

  8. 8.

    The treatise was composed towards the end of 1654 and published posthumously, together with others connected to it, in 1665 under the complete title Traité du Triangle arithmétique, avec quelques autres petits traités sur la même matière.

  9. 9.

    See, for example Martzloff (2006) p. 20, 158 and 342 and Martzloff (1993) p. 165.

  10. 10.

    Translation from Legge (1885) Section III. Part II. 9. Another example can be found in the chap. “Record of Music” (Yue ji 樂記). See Legge (1885) sec. II.14.

  11. 11.

    See Wang (2012) p. 85–93, here p. 92.

  12. 12.

    For the earlier significance of “analogy” in mathematics in China as a form of reasoning based on examples, see Volkov (1992).

  13. 13.

    Schironi (2007) shows that the originally mathematical concept of analogy was later taken over by Greek grammarians.

  14. 14.

    On the genesis of the Shuli jingyun, which extends from 1690 to 1723, see Jami (1998) p. 118–119: Between 1690 and appr. 1695 Jesuits—in particular by Antoine Thomas (1644–1709) and Jean-François Gerbillon (1654–1707)—wrote manuals for the emperor, essentially in three fields: arithmetic, algebra and geometry. From 1713 on, these texts were revised and rewritten by Chinese scholars working in the Academy of Mathematics (Suanxue guan 算學館), an institution created especially at the Mengyang zhai 蒙養齋—a Bureau where scholarly books were compiled under imperial patronage—for the compilation of the Origins of musical harmony and the calendar (Lüli yuanyuan 律曆淵源), of which the Essence of Numbers and their Principles were the mathematical part.

  15. 15.

    Translated from Yunzhi 允祉 (1723) vol. 20, p. 18A and already quoted on page 38. I provide the quote again here because my focus is on argumentation rather than on the mathematical aspects of the ellipse.

  16. 16.

    Translated from Yang (1261) p. 78A–78B.

  17. 17.

    Measure of length, where 1 zhang=10 chi.

  18. 18.

    The procedure here corresponds to the following calculation (for the various dimensions, see Fig. 5.7 to the left):

    $$\displaystyle \begin{aligned}A=[(2d+b)\cdot c+(2b+d)\cdot a]\cdot h \div 6.\end{aligned}$$
  19. 19.

    Text framed in red in Fig. 5.6.

  20. 20.

    The procedure of “comparable category” here corresponds to the following calculation (for the various dimensions, see Fig. 5.7 to the right):

    $$\displaystyle \begin{aligned}{}[A=(2d+b)\cdot c+(2b+d)\cdot a+(b-d)]\cdot h \div 6. \end{aligned}$$
  21. 21.

    For an extensive discussion of Yang Hui’s contributions see Bréard (1999a) chap. 3.2, p. 119–158.

  22. 22.

    The interested reader might consult Bréard (1999a) chap. 4 and 5 or Tian (2003).

  23. 23.

    Martzloff translates the title as Accumulated “Heaps” Studied from an Analogical Point of View. See Selin (2008) p. 1225.

  24. 24.

    By relying on diagrams with separate explanations, Wang Lai uses (incomplete) induction to prove rhetorically the correctness of a recursive algorithm that he represents graphically up to a certain finite step. For details on the inductive pattern and the visual tools in Wang Lai’s text, see Bréard (2019).

  25. 25.

    I use the terms “algorithm” and “procedure” interchangeably, the latter being the literal translation of shu 術, which in the Chinese mathematical tradition designates the list of operations to follow for calculating the numerical solution of a mathematical problem.

  26. 26.

    See Mueller (1981).

  27. 27.

    Li (1867) p. 1a. Li qualifies identically Dong Youcheng’s 董佑誠 (style name Fangli, 1791–1823) work on quadrangular piles, but since Li does not reproduce discursive elements from Dong’s text, I do not analyse it here with respect to Li Shanlan’s schemes of justification.

  28. 28.

    Depicted in the Traité du Triangle Arithmétique “apparently printed in 1654 (though circulated in 1665).” See Daston (1988) p. 9.

  29. 29.

    Todhunter (1865) chap. 2 as well as many other historians of probability theory considers the Problem of Points, which prompted the seminal correspondence between Pascal and Pierre Fermat in 1654, as the beginning of the theory of probability. See also Todhunter (1865) chap. 9 on the history of the arithmetic triangle.

  30. 30.

    See Bréard (1999a) chap. 4.2 and Bréard (1999b).

  31. 31.

    On the meaning of the procedures and diagrams in Wang’s text, see Bréard (2015).

  32. 32.

    Recursive algorithms calculate the solution to a problem depending on solutions to previously calculated instances of the same problem. It is thus possible to define a mathematical object for any instance by a finite statement.

  33. 33.

    Expressed formally, the recursive character of Wang’s construction becomes even more apparent: \(C_2^{10}=\sum _{i=1}^{n-1}C_1^i=C_1^1+C_1^2+\cdots +C_1^9\).

  34. 34.

    Idem: \(C_3^{10}=\sum _{i=2}^{n-1}C_2^i=C_2^2+C_2^3+\cdots +C_2^9\).

  35. 35.

    It can be grouped and ordered in two ways. A horizontal reading from top to bottom gives the terms:

    $$\displaystyle \begin{aligned}C^{10}_5= 6\cdot 1 + 5\cdot 4 + 4 \cdot 10 + 3\cdot 20+2\cdot 35 + 1\cdot 56\end{aligned}$$

    whereas a diagonal reading produces different terms, yielding the same sum:

    $$\displaystyle \begin{aligned}C^{10}_5=1 + (1+4) + (1+4+10) + (1+4+10+20)+\end{aligned}$$
    $$\displaystyle \begin{aligned}+ (1+4+10+20+35) + (1+4+10+20+35+56).\end{aligned}$$
  36. 36.

    Li (1867) vol. 1, p. 3B.

  37. 37.

    Translated from Li (1867) scroll 2, p. 2B-3A. Punctuation in the Chinese quote is mine.

  38. 38.

    For more details, see my introduction to Li (2019).

  39. 39.

    Translated from Li (1867) scroll 2, p. 3A. Punctuation in the Chinese quote is mine.

  40. 40.

    For example, the number 57 in the second cell from the left in the green line in Fig. 5.17 is the sum of 5 ⋅ 1 and 2 ⋅ 26, since the 1 on its upper left is in the fifth position of its line that goes diagonally down to the left and 26 on its upper right is in the second position in the line going diagonally down to the right.

  41. 41.

    Translated from Li (1867) vol. 2, p. 3B–4A.

  42. 42.

    See Li (1867) vol. 3, p. 3A–3B.

  43. 43.

    A familiar formulation is in terms of the sum of squares of natural numbers:

    $$\displaystyle \begin{aligned}\sum^n_{k=1}k^2=\frac{n(n+1)(2n+1)}{6}.\end{aligned}$$
  44. 44.

    See scroll 1, p. 5B and scroll 2, p. 7B: “By the Celestial Element [method] induce this accordingly.” (Yi tianyuan fang ci tui zhi 以天元仿此推之).

  45. 45.

    See Kim (2004) p. 41.

  46. 46.

    Quote from Zhu Xi’s Classified Dialogues of Master Zhu (Zhuzi yulei 朱子語類, compiled in 1270), translated in Kim (2004) p. 57.

  47. 47.

    See Li and Wylie (1859) scroll 8, p. 8A and Loomis (1868) p. 105.

  48. 48.

    Li (1867) scroll 1, p. 1A–1B.

  49. 49.

    Chen (17th) p. 685.

  50. 50.

    Jia 甲, Yi 乙, Bing 丙 and Ding 丁 are the first four of the Ten Heavenly or Celestial Stems (tiangan 天干) which, together with the Twelve Earthly Branches (dizhi 地支), beginning with Zi 子, Chou 丑, Yin 寅 and Mao 卯, form China’s traditional calendrical system. They were also used since the first translation of the first six books of Euclid’s Elements (Ricci and Xu 1607) for representing the alphabetic letters in the geometric diagrams.

  51. 51.

    Translated from Chen (1904) p. 1A–1B.

  52. 52.

    See Tian (2003) p. 58–69.

  53. 53.

    By “proof” I mean an argument very much in the style of Greek proofs, considered rigorous by contemporary authors and later commentators.

  54. 54.

    As an application of the recursive algorithm, he only gives one example drawn from divination with hexagrams. In this case, the algorithm allows for the calculation of the total number of possible mutations of a diagram of six lines, with two possibilities for each line. In Bréard (2012) I have shown that in late imperial China, among cultural practices like gaming or divination, hexagrams became the paradigmatic model for observing and analysing stable combinatorial patterns. Bréard (2019) contains a complete translation of Wang Lai’s text.

  55. 55.

    For examples from the Babylonian and Greek mathematical traditions, see Høyrup (2012) and Mueller (2012).

  56. 56.

    At 149A-C. See Acerbi (2000). The text “displays a series of phrases, adverbs, and syntactical constructs which enable him to word in a very refined way the explicitly iterative character of the proof.” Acerbi (2003) p. 477. More generally, see idem p. 476–481 for an overview of recursive or quasi-inductive proofs in Greek mathematical writings. Outlining “the composition of the combinatorial humus in which calculations must have grown out” (p. 466), Acerbi shows, for example through a passage of Plutarch’s De Stoicorum repugnantiis, that, even without an explicitly formulated proof scheme, an astonishing result related to Schröder numbers could be obtained.

  57. 57.

    Pascal (1665) p. 5:

    En tout Triangle Arithmetique, la somme des cellules de chaque base, est double de celles de la base precedente.

  58. 58.

    Pascal (1665) p. 5:

    En tout Triangle Arithmetique, la somme des cellules de chaque base, est un nombre de la progression double, qui commence par l’unité, dont l’exposant est le mesme que celuy de la base.

  59. 59.

    Idem. Final phrases to corollary 7 and 8 respectively: “La mesme chose se demonstre de mesme de toutes les autres” and “Et ainsi à l’infiny.”

  60. 60.

    Pascal expresses this relation proportionally. For more details, see Edwards (1987) p. 63–65.

  61. 61.

    Idem p. 91 in the Latin version: “Quamvis infiniti sint hujus propositionis casus, […], breviter tamen demonstrabo, positis duobus assumptis.”

  62. 62.

    Pascal (1665) p. 7:

    Le 1. qui est évident de soy-mesme, que cette proportion se rencontre dans la seconde base; car il est bien visible, que f est às comme 1 est à 1.

  63. 63.

    Quoted from Conséquence Douziesme in Pascal (1665) p. 7.

  64. 64.

    Translated from Conséquence Douziesme in Pascal (1665) p. 8.

  65. 65.

    See Kim (2014) p. 35–52, previously published as Kim (2004).

References

  • Acerbi, Fabio (2000). Plato: Parmenides 149a7–c3. A Proof by Complete Induction? Archive for History of Exact Sciences 55, 57–76.

    Article  MathSciNet  Google Scholar 

  • Acerbi, Fabio (2003). On the Shoulders of Hipparchus. A Reappraisal of Ancient Greek Combinatorics. Archive for History of Exact Sciences 57, 465–502.

    Article  MathSciNet  Google Scholar 

  • Bréard, Andrea (1999a). Re-Kreation eines mathematischen Konzeptes im chinesischen Diskurs: Reihen vom 1. bis zum 19. Jahrhundert, Volume 42 of Boethius. Stuttgart: Steiner Verlag.

    MATH  Google Scholar 

  • Bréard, Andrea (1999b). The Reading of Zhu Shijie. In Sik Kim Yung and Francesca Bray (Eds.), Current Perspectives in the History of Science in East Asia, 291–306. Seoul National University Press.

    Google Scholar 

  • Bréard, Andrea (2012). Divination with Hexagrams as Combinatorial Practice. A Paradigmatic Model in Mathematics. Zhouyi Studies (English Version) 8, 157–174.

    Google Scholar 

  • Bréard, Andrea (2015). What Diagrams Argue in Late Imperial Chinese Combinatorial Texts. Early Science and Medicine 20(3), 241–264.

    Article  MathSciNet  Google Scholar 

  • Bréard, Andrea (2019). Inductive Arguments in the Midst of Smoke: ‘Proving’ Rhetorically and Visually that Algorithms Work. In Ari D. Levine, Joachim Kurtz, and Martin Hofmann (Eds.), Powerful Arguments: Standards of Validity in Late Imperial China. Leiden: Brill.

    Google Scholar 

  • Chen, Houyao 陳厚耀 (late 17th). Cuozong fayi 錯綜法義 (The Meaning of Methods for Alternation and Combination). Reprint in (Guo et al. 1993) 4:685–688.

  • Chen, Song (Mengshi) 陳崧 (夢石) (1898–1904). Duoji bilei houji 垛積比類後記 (Afterword to the Comparable Categories of Discrete Accumulations). In Dongxi congshu 東溪叢書 (Collectanea from the Eastern Creek). Chaojun jingxian tang Dongxi ru gu ge 潮郡敬賢堂東溪茹古閣.

    Google Scholar 

  • Clavius, Christophorus (1574). Euclidis Elementorum Libri XV Accessit XVI de Solidorum Regularium Cuiuslibet Intra Quodlibet Comparatione, Omnes Perspicuis Demonstrationibus, Accuratisque Scholiis Illustrati, ac Multarum Rerum Accessione Locupletati. Rome: V. Accoltum.

    Google Scholar 

  • Daston, Lorraine J. (1988). Classical Probability in the Enlightenment. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Diofanto (2011). De polygonis numeris (introduzione, testo critico, traduzione italiana e commento di Fabio Acerbi), Volume 1 of Mathematica graeca antiqua. Pisa, Roma: Fabrizio Serra.

    Google Scholar 

  • Edwards, A.W.F. (1987). Pascal’s Arithmetical Triangle. London & New York: Charles Griffin & Oxford University Press.

    MATH  Google Scholar 

  • Guo, Shuchun 郭書春 et al. (Eds.) (1993). Zhongguo kexue jishu dianji tonghui: Shuxue juan 中國科學技術典籍通彙: 數學卷 (Comprehensive Collection of Ancient Classics on Science and Technology in China: Mathematical Books), 5 vols. Zhengzhou: Henan jiaoyu chubanshe 河南教育出版社.

    Google Scholar 

  • Horng, Wann-Sheng (1991). Li Shanlan: The Impact of Western Mathematics in China during the Late 19th Century. Ph. D. thesis, Graduate Center, City University of New York.

    Google Scholar 

  • Høyrup, Jens (2012). Mathematical Justification as Non-Conceptualized Practice: the Babylonian Example. In Karine Chemla (Ed.), The History of Mathematical Proof in Ancient Traditions, 362–383. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Jami, Catherine (1998). Traductions et synthèses : Les mathématiques occidentales en Chine, 1607–1782. In Dominique Tournès (Ed.), L’Océan Indien au carrefour des mathématiques arabes, chinoises, européennes et indiennes, 117–126. Saint-Denis: I.U.F.M. de la Réunion.

    Google Scholar 

  • Kim, Yung Sik (2004). ‘Analogical Extension’ (leitui) in Zhu Xi’s Methodology of ‘Invesitgation of Things’ (gewu) and ‘Extension of Knowledge’ (zhizhi). Journal of Song-Yuan Studies 34, 41–57.

    Google Scholar 

  • Kim, Yung Sik (2014). Questioning Science in East Asian Contexts. Essays on Science, Confucianism, and the Comparative History of Science. Number 1 in Science and Religion in East Asia. Leiden; Boston: Brill.

    Google Scholar 

  • Legge, James (Trans.) (1885). The LîKî, I–X, Volume IV of The Sacred Books of China. The Texts of Confucianism. New York, NY: At the Clarendon Press.

    Google Scholar 

  • Li, Shanlan 李善蘭 (1867). Duoji bilei 垛積比類 (Comparable Categories of Discrete Accumulations), 4 scrolls. In Zeguxizhai suanxue 則古昔齋算學 (Mathematics from the Studio Devoted to the Imitation of the Ancient Chinese Tradition) (Jinling 金陵刻本 ed.), Volume 4.

    Google Scholar 

  • Li, Shanlan 李善蘭 (2019). Catégories analogues d’accumulations discrètes (Duoji bilei 垛積比類 ), traduit et commenté par Andrea Bréard. La Bibliothèque Chinoise. Paris: Les Belles Lettres.

    Google Scholar 

  • Li, Shanlan 李善蘭 and Alexander Wylie 偉烈亞力 (1859). Dai weiji shiji 代 微積拾級 (Elements of Analytical Geometry and of the Differential and Integral Calculus) 18 scrolls. Shanghai: Mohai shuguan 墨海書館. Original by Elias Loomis 羅密士(Loomis 1851).

  • Li, Zhizao 李之藻 et al. (1965). Tianxue chuhan 天學初函 (First Collectanea of Heavenly Studies), 6 vols. (Reprint ed.), scroll 23, First Series (Chubian 初編 卷二十三) of Wu Xiangxiang 吳相湘 (Ed.), Zhongguo shixue congshu 中國史學叢書. Taipei: Taiwan xuesheng shuju 臺灣學生書局.

    Google Scholar 

  • Loomis, Elias (1851). Elements of Analytical Geometry and of the Differential and Integral Calculus. New York: Harper & Brothers.

    Google Scholar 

  • Loomis, Elias (1868). Elements of Analytical Geometry and of the Differential and Integral Calculus (19th ed.). New York: Harper & Brothers.

    Google Scholar 

  • Martzloff, Jean-Claude (1993). Eléments de réflexion sur les réactions chinoises à la géométrie euclidienne à la fin du XVIIe siècle. Historia Mathematica 20, 160–179.

    Article  MathSciNet  Google Scholar 

  • Martzloff, Jean-Claude (2006). A History of Chinese Mathematics. Berlin, Heidelberg: Springer. Corrected second printing of the first English edition of 1977.

    Google Scholar 

  • Mueller, Ian (1981). Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Mineola, NY: Dover.

    MATH  Google Scholar 

  • Mueller, Ian (2012). Generalizing about Polygonal Numbers in Ancient Greek Mathematics. In Karine Chemla (Ed.), The History of Mathematical Proof in Ancient Traditions, 311–326. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pascal, Blaise (1665). Traité du triangle arithmétique avec quelques autres petits traitez sur la mesme matière. Paris: Guillaume Desprez.

    Google Scholar 

  • Pólya, George (1954). Induction and Analogy in Mathematics. Number 1 in Mathematics and Plausible Reasoning. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Ricci, Matteo and Guangqi Xu (1607). Jihe yuanben 幾何原本 (The Elements). Beijing: [n.p.]. Translation of the first six books of (Clavius 1574), included in (Li et al. 1965).

  • Schironi, Francesca (2007). ᾿Αναλογία, analogia, proportio, ratio: Loan Words, Calques and Reinterpretations of a Greek Technical Word. In Louis Basset, Frédérique Biville, Bernard Colombat, Pierre Swiggers, and Alfons Wouters (Eds.), Bilinguisme et terminologie grammaticale greco-latine, Volume 27 of Orbis / Supplementa, 321–338. Leuven, Paris, Dudley, MA: Peeters.

    Google Scholar 

  • Selin, Helaine (Ed.) (2008). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2nd ed.). Springer.

    MATH  Google Scholar 

  • Tian, Miao (2003). The Westernization of Chinese Mathematics: A Case Study of the duoji Method and its Development. EASTM 20, 45–72.

    Google Scholar 

  • Todhunter, Isaac (1865). A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace. Cambridge and London: Macmillan and Co.

    Book  Google Scholar 

  • Volkov, Alexeï K. (1992). Analogical Reasoning in Ancient China: Some Examples. Extrême-Orient, Extrême-Occident 14, 15–48.

    Article  Google Scholar 

  • Wang, Robin R. (2012). Yinyang: The Way Of Heaven And Earth In Chinese Thought And Culture, Volume 11 of New Approaches to Asian History. Cambridge University Press.

    Book  Google Scholar 

  • Wang, Lai 汪萊 (1854). Dijian shuli 遞兼數理 (Mathematical Principles of Sequential Combinations). In Hengzhai suanxue 衡齋算學 (Hengzhai’s Mathematical Learning), Volume 4, 6B–12B. Chine: Jiashutang 嘉樹堂. Reprint in (Guo et al. 1993) 4:1512–1516.

  • Wu, Jing 吳敬 (fl. 1450). Jiu zhang suanfa bilei daquan 九章算法比類大全 (Great Compendium of Comparable Categories to the Nine Chapters on Mathematical Methods). Reprinted in (Guo et al. 1993) 2:1–333.

  • Yang, Hui 楊輝 (1261). Xiangjie jiu zhang suanfa 詳解九章算法 (Detailed Explanations of the Nine Chapters on Mathematical Methods) (Yijiatang congshu 宜稼堂叢書 1842 ed.). Reprinted in (Guo et al. 1993) 1:949–1043.

  • Yang, Hui 楊輝 (1842). Chengchu tongbian suanbao 乘除通變算寶 (Mathematical Treasure of Variations on Multiplication and Division). In Yang Hui suanfa 楊輝算法 (Yang Hui’s Mathematical Methods) (Yijiatang congshu 宜稼堂叢書 ed.).

    Google Scholar 

  • Yunzhi 允祉 (Ed.) (1723). Yuzhi shuli jingyun 御製數理精蘊 (Essence of Numbers and their Principles). [Beijing?]: [n.p.]. Reprint in (Guo et al. 1993) 3.

  • Zhang, Yong 章用 (1939). Duoji bilei shuzheng 垛積比類疏證 (=Proofing the Formulas in the Duoji Bilei). Kexue 科學 23, 647–663.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bréard, A. (2019). Discourse Transformed: Changing Modes of Argumentation. In: Nine Chapters on Mathematical Modernity. Transcultural Research – Heidelberg Studies on Asia and Europe in a Global Context. Springer, Cham. https://doi.org/10.1007/978-3-319-93695-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93695-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93694-9

  • Online ISBN: 978-3-319-93695-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics