Paddy Soil Microbial Diversity and Enzymatic Activity in Relation to Pollution

  • Muhammad Afzaal
  • Sidra Mukhtar
  • Afifa Malik
  • Rabbia Murtaza
  • Masooma Nazar
Part of the Soil Biology book series (SOILBIOL, volume 53)


Chemical and microbial characterizations of a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil are used to investigate whether the distribution of heavy metals (Cd, Cu, Pb, and Zn) regulates microbial community activity, abundance, and diversity at the microenvironment scale. The soils are physically fractionated into coarse-sand, fine-sand, silt, and clay fractions. Long-term heavy metal pollution notably decreases soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon across the fractions, respectively. The coarse-sand fraction is more affected by pollution than the clay fraction and displayed a significantly lower respiration and dehydrogenase activity. The abundances and diversities of bacteria were less affected under pollution. Long-term heavy metal pollution decreased the microbial biomass, activity, and diversity in long-term exposure.


  1. Baath E, Díaz-Raviña M, Frostegård Å, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64(1):238–245PubMedPubMedCentralGoogle Scholar
  2. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582):364–369CrossRefGoogle Scholar
  3. Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agro ecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262CrossRefGoogle Scholar
  4. Cao ZH, Huang JF, Zhang CS, Li AF (2004) Soil quality evolution after land use change from paddy soil to vegetable land. Environ Geochem Health 26(2):97–103CrossRefGoogle Scholar
  5. Chao-Rong GE, Zhang QC (2011) Microbial community structure and enzyme activities in a sequence of copper-polluted soils. Pedosphere 21(2):164–169CrossRefGoogle Scholar
  6. Chen Y, Zuo R, Zhu Q, Sun Y, Li M, Dong Y, Ru Y, Zhang H, Zheng X, Zhang Z (2014) MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 67:51–57CrossRefGoogle Scholar
  7. Chodak M, Niklińska M (2010) Effect of texture and tree species on microbial properties of mine soils. Appl Soil Ecol 46(2):268–275CrossRefGoogle Scholar
  8. Do TX (2012) Microbial communities in paddy fields in the Mekong Delta of Vietnam, vol 2012, no. 101Google Scholar
  9. Geisseler D, Linquist BA, Lazicki PA (2017) Effect of fertilization on soil microorganisms in paddy rice systems–A meta-analysis. Soil Biol Biochem 15:452–460CrossRefGoogle Scholar
  10. Gregorich EG, Monreal CM, Carter MR, Angers DA, Ellert B (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74(4):367–385CrossRefGoogle Scholar
  11. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13(6):1642–1654CrossRefGoogle Scholar
  12. Hu XF, Jiang Y, Shu Y, Hu X, Liu L, Luo F (2014) Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J Geochem Explor 147:139–150CrossRefGoogle Scholar
  13. Huaidong HE, Waichin LI, Riqing YU, Zhihong YE (2017) Illumine-based analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination. Pedosphere 27(3):569–578CrossRefGoogle Scholar
  14. Jin-Hua W, Hui D, Yi-Tong L, Guo-Qing S (2009) Combined effects of cadmium and butachlor on microbial activities and community DNA in a paddy soil. Pedosphere 19(5):623–630CrossRefGoogle Scholar
  15. Keogel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Keolbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14CrossRefGoogle Scholar
  16. Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol Biochem 41(5):969–977CrossRefGoogle Scholar
  17. Li Y-J, Chen X, Shamsi I, Fang P, Lin X-Y (2012) Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil. Pedosphere 22(5):661–672CrossRefGoogle Scholar
  18. Li Y, Zhang W, Zheng D, Zhou Z, Yu W, Zhang L, Feng L, Liang X, Guan W, Zhou J, Chen J, Lin Z (2014) Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation. Genom Biol Evol 6(9):2516–2526CrossRefGoogle Scholar
  19. Li X, Sun J, Wang H, Li X, Wang J, Zhang H (2017) Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China. Geoderma 290:69–74CrossRefGoogle Scholar
  20. Lin H, Sun W, Zhang Z, Chapman SJ, Freitag TE, Fu J, Ma J (2016) Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy–upland rotation system. Environ Pollut 211:332–337CrossRefGoogle Scholar
  21. Lopes AR, Faria C, Prieto-Fernández Á, Trasar-Cepeda C, Manaia CM, Nunes OC (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125CrossRefGoogle Scholar
  22. Lu L, Roberts G, Simon K, Yu J, Hudson AP (2003) A protein required for respiratory growth of Saccharomyces cerevisiae. Curr Genet 43(4):263–272CrossRefGoogle Scholar
  23. Luo X, Fu X, Yang Y, Cai P, Peng S, Chen W, Huang Q (2016) Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 6Google Scholar
  24. Mao TT, Yin R, Deng H (2015) Effects of copper on methane emission, methanogens and methanotrophs in the rhizosphere and bulk soil of rice paddy. Catena 133:233–240CrossRefGoogle Scholar
  25. Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234CrossRefGoogle Scholar
  26. Min H, Ye YF, Chen ZY, Wu WX, Yufeng D (2001) Effects of butachlor on microbial populations and enzyme activities in paddy soil. J Environ Sci Health B 36(5):581–595CrossRefGoogle Scholar
  27. Moche M, Gutknecht J, Schulz E, Langer U, Rinklebe J (2015) Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biol Biochem 90:169–178CrossRefGoogle Scholar
  28. Nishimura S, Yonemura S, Sawamoto T, Shirato Y, Akiyama H, Sudo S, Yagi K (2008) Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agric Ecosyst Environ 125(1):9–20CrossRefGoogle Scholar
  29. Pennanen T, Frostegard ASA, Fritze H, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62(2):420–428PubMedPubMedCentralGoogle Scholar
  30. Praeg N, Wagner AO, Illmer P (2014) Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils. Eur J Soil Biol 65:96–106CrossRefGoogle Scholar
  31. Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12(5):311–316CrossRefGoogle Scholar
  32. Shang H, Yang Q, Wei S, Wang J (2012) The effects of mercury and lead on microbial biomass of paddy soil from southwest of China. Procedia Environ Sci 12:468–473CrossRefGoogle Scholar
  33. Shibahara F, Inubushi K (1997) Effect of organic matter application on microbial biomass and available nutrients in various types of paddy soils. Soil Sci Plant Nutr 43:191–203CrossRefGoogle Scholar
  34. Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 34(11):1599–1611CrossRefGoogle Scholar
  35. Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044CrossRefGoogle Scholar
  36. Tang X, Hashmi MZ, Long D, Chen L, Khan MI, Shen C (2014) Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop. Int J Environ Res Public Health 11(3):3118–3131CrossRefGoogle Scholar
  37. Wang N, Chang ZZ, Xue XM, Yu JG, Shi XX, Ma LQ, Li HB (2017a) Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci Total Environ 581:689–696CrossRefGoogle Scholar
  38. Wang N, Xue XM, Juhasz AL, Chang ZZ, Li HB (2017b) Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ Pollut 220:514–522CrossRefGoogle Scholar
  39. Wu W, Dong C, Wu J, Liu X, Wu Y, Chen X, Yu S (2017) Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Sci Total Environ 601:57–65CrossRefGoogle Scholar
  40. Xiao XY, Wang MW, Zhu HW, Guo ZH, Han XQ, Zeng P (2017) Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol Environ Saf 142:200–206CrossRefGoogle Scholar
  41. Xinyu Z, Juan X, Fengting Y, Wenyi D, Xiaoqin D, Yang Y, Xiaomin S (2017) Specific responses of soil microbial residue carbon to ling term applications of mineral fertilizer to reddish paddy soils. Pedosphere. doi: Scholar
  42. Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180(4):911–921CrossRefGoogle Scholar
  43. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  44. Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932CrossRefGoogle Scholar
  45. Yang HQ, Hao YK (2011) Main restrictive factors and countermeasures of rice industry in China. Chin Agr Sci Bull 27:351–354Google Scholar
  46. Yang D, Zhang M (2014) Effects of land-use conversion from paddy field to orchard farm on soil microbial genetic diversity and community structure. Eur J Soil Biol 64:30–39CrossRefGoogle Scholar
  47. Yang J, Tang C, Wang F, Wu Y (2016) Co-contamination of Cu and Cd in paddy fields: using periphyton to entrap heavy metals. J Hazard Mater 304:150–158CrossRefGoogle Scholar
  48. Yao H, Xu J, Huang C (2003) Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal polluted paddy soils. Geoderma 115:139–148CrossRefGoogle Scholar
  49. Zeng LS, Liao M, Chen CL, Huang CY (2007) Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicol Environ Saf 67(1):67–74CrossRefGoogle Scholar
  50. Zhang YB, Cao N, Su XG, Xu XH, Yang F, Yang ZM (2009) Effects of soil and water conservation measures on soil properties in the low mountain and hill area of Jilin province. Bull Soil Water Conserv 5:0–53Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Afzaal
    • 1
  • Sidra Mukhtar
    • 1
  • Afifa Malik
    • 1
  • Rabbia Murtaza
    • 2
  • Masooma Nazar
    • 1
  1. 1.Sustainable Development Study CenterGC UniversityLahorePakistan
  2. 2.Center for Climate Change and Research DevelopmentCOMSATS UniversityIslamabadPakistan

Personalised recommendations