3D Printing and Adenosine Receptor Activation for Craniomaxillofacial Regeneration
- 610 Downloads
Abstract
The evolution of maxillofacial reconstruction has led to advancements in patient-specific treatment plans. While the fusion of craniomaxillofacial and microvascular principles has given rise to reconstructive tools capable of approaching normalcy, limitations persist. Although the promise of bone tissue engineering has yet to be realized, promising translational developments have been reported. This chapter summarizes our group’s recent advances in materials science and 3D printing, bioactive molecule osteogenic stimulation, and their integration toward the development of devices capable of maxillofacial bony restoration.
Keywords
3D printing Bio-ceramic scaffolds Calcium phosphate biomaterials Adenosine receptors DipyridamoleNotes
Acknowledgments
We would like to wholeheartedly thank Dr. Joseph G. McCarthy for his endorsement of our work and contributions to this chapter. His insight on advances and setbacks in craniomaxillofacial surgery over the last quarter of a century provides us with the unique opportunity to focus on clinically relevant challenges that have challenged reconstructive surgeons for decades.
The work presented in this chapter was supported by NIH/NIAMS 5R01AR068593-02, 3R01AR068593-02S1, 5R01AR068593-03, & 3R01AR068593-03S1, NIH/NICHD R21HD090664-01, and DoD W81XWH-16-1-0772. Drs. Coelho and Cronstein are co-inventors of the 3D printing technology presented in this chapter.
References
- 1.Levine JP, Bae JS, Soares M, Brecht LE, Saadeh PB, Ceradini DJ, et al. Jaw in a day: total maxillofacial reconstruction using digital technology. Plast Reconstr Surg. 2013;131(6):1386–91.CrossRefGoogle Scholar
- 2.Runyan CM, Sharma V, Staffenberg DA, Levine JP, Brecht LE, Wexler LH, et al. Jaw in a day: state of the art in maxillary reconstruction. J Craniofac Surg. 2016;27(8):2101–4.CrossRefGoogle Scholar
- 3.Hidalgo DA. Condyle transplantation in free flap mandible reconstruction. Plast Reconstr Surg. 1994;93(4):770–81.CrossRefGoogle Scholar
- 4.Hidalgo DA, Rekow A. A review of 60 consecutive fibula free flap mandible reconstructions. Plast Reconstr Surg. 1995;96(3):585–96.CrossRefGoogle Scholar
- 5.Simon JL, Michna S, Lewis JA, Rekow DE, Thompson VP, Smay JE, et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A. 2007;83A(3):747–58.CrossRefGoogle Scholar
- 6.Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–34.CrossRefGoogle Scholar
- 7.Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.CrossRefGoogle Scholar
- 8.Steigenga JT, Al-Shammari KF, Nociti FH, Misch CE, Wang H-L. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12(4):306–17.CrossRefGoogle Scholar
- 9.Wilson CE, de Bruijn JD, van Blitterswijk CA, Verbout AJ, Dhert WJA. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J Biomed Mater Res A. 2004;68A(1):123–32.CrossRefGoogle Scholar
- 10.Jimbo R, Anchieta R, Baldassarri M, Granato R, Marin C, Teixeira HS, Tovar N, Vandeweghe S, Janal MN, Coelho PG. Histomorphometry and bone mechanical property evolution around different implant systems at early healing stages: an experimental study in dogs. Implant Dent. 2013;22(6):596–603.CrossRefGoogle Scholar
- 11.Coelho PG, Jimbo R. Osseointegration of metallic devices: current trends based on implant hardware design. Arch Biochem Biophys. 2014;561:99–108.CrossRefGoogle Scholar
- 12.Ishack S, Mediero A, Wilder T, Ricci JL, Cronstein BN. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater. 2017;105(2):366–75.CrossRefGoogle Scholar
- 13.Bekisz JM, Flores RL, Witek L, Lopez CD, Runyan CM, Torroni A, et al. Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defects. J Craniomaxillofac Surg. 2018;46(2):237–44.CrossRefGoogle Scholar
- 14.Lopez CD, Diaz-Siso JR, Witek L, Bekisz JM, Cronstein BN, Torroni A, et al. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. J Surg Res. 2018;223:115–22.CrossRefGoogle Scholar
- 15.Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74((2):782–8.CrossRefGoogle Scholar
- 16.Cai S, Xi J, Chua CK. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement. Methods Mol Biol. 2012;868:45–55.CrossRefGoogle Scholar
- 17.Castilho M, Dias M, Gbureck U, Groll J, Fernandes P, Pires I, et al. Fabrication of computationally designed scaffolds by low temperature 3D printing. Biofabrication. 2013;5(3):035012.CrossRefGoogle Scholar
- 18.Wang X, Schröder HC, Müller WE. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine. Int Rev Cell Mol Biol. 2014;313:27–77.CrossRefGoogle Scholar
- 19.Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C. 2014;38:1–10.CrossRefGoogle Scholar
- 20.Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Osman NAA. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS One. 2014;9(9):e108252.CrossRefGoogle Scholar
- 21.Yao Q, Wei B, Guo Y, Jin C, Du X, Yan C, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):1–9.Google Scholar
- 22.Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.CrossRefGoogle Scholar
- 23.Hollister SJ, Flanagan CL, Zopf DA, Morrison RJ, Nasser H, Patel JJ, et al. Design control for clinical translation of 3D printed modular scaffolds. Ann Biomed Eng. 2015;43(3):774–86.CrossRefGoogle Scholar
- 24.Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J, et al. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2015;7(43):24377–83.CrossRefGoogle Scholar
- 25.Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016;34(5):740–53.CrossRefGoogle Scholar
- 26.Xinning Y, Jinghua F, Jianyang L, Xianyan Y, Dongshuang H, Zhongru G, et al. [Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique]. Zhejiang da xue xue bao Yi xue ban= Journal of Zhejiang University Medical. Sciences. 2016;45(2):126–31.Google Scholar
- 27.Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater. 2003;64(2):65–9.CrossRefGoogle Scholar
- 28.Gonçalves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. 2016;104(6):1210–9.CrossRefGoogle Scholar
- 29.Provaggi E, Leong JJ, Kalaskar DM. Applications of 3D printing in the management of severe spinal conditions. Proc Inst Mech Eng H J Eng Med. 2017;231(6):471–86.CrossRefGoogle Scholar
- 30.Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg. 2001;71(6):354–61.CrossRefGoogle Scholar
- 31.Costa MA, Barbosa A, Neto E, Sa-e-Sousa A, Freitas R, Neves JM, et al. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol. 2011;226(5):1353–66.CrossRefGoogle Scholar
- 32.Mediero A, Frenkel SR, Wilder T, He W, Mazumder A, Cronstein BN. Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med. 2012;4(135):135ra65.CrossRefGoogle Scholar
- 33.Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends Endocrinol Metab. 2013;24(6):290–300.CrossRefGoogle Scholar
- 34.Mediero A, Wilder T, Perez-Aso M, Cronstein BN. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J. 2015;29(4):1577–90.CrossRefGoogle Scholar
- 35.Mediero A, Wilder T, Reddy VS, Cheng Q, Tovar N, Coelho PG, et al. Ticagrelor regulates osteoblast and osteoclast function and promotes bone formation in vivo via an adenosine-dependent mechanism. FASEB J. 2016;30(11):3887–900.CrossRefGoogle Scholar
- 36.Martin C, Leone M, Viviand X, Ayem ML. High adenosine plasma concentration as a prognostic index for outcome in patients with septic shock. Crit Care. 2000;28(9):3198–202.CrossRefGoogle Scholar
- 37.Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R. A new physiological function for adenosine: regulation of superoxide anion production. Trans Assoc Am Phys. 1983;96:384–91.PubMedGoogle Scholar
- 38.Haskó G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004;25(1):33–9.CrossRefGoogle Scholar
- 39.Haskó G, Pacher P, Deitch EA, Vizi SE. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113(2):264–75.CrossRefGoogle Scholar
- 40.Evans BAJ, Elford C, Pexa A, Francis K, Hughes AC, Deussen A, et al. Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res. 2006;21(2):228–36.CrossRefGoogle Scholar
- 41.Kara FM, Doty SB, Boskey A, Goldring S, Zaidi M, Fredholm BB, et al. Adenosine A1 receptors regulate bone resorption in mice: adenosine A1 receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A1 receptor–knockout mice. Arthritis Rheum. 2010;62(2):534–41.CrossRefGoogle Scholar
- 42.Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol. 2012;180(2):775–86.CrossRefGoogle Scholar
- 43.Mediero A, Wilder T, Perez-Aso M, Cronstein BN. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB Journal. 2015;29(4):1577–90.CrossRefGoogle Scholar
- 44.Gharibi B, Abraham AA, Ham J. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res. 2011;26(9):2112–24.CrossRefGoogle Scholar
- 45.Costa AM, Barbosa A, Neto E, Sousa SA, Freitas R, Neves JM, et al. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol. 2011;226(5):1353–66.CrossRefGoogle Scholar
- 46.Rath-Wolfson L, Bar-Yehuda S, Madi L, Ochaion A, Cohen S, Zabutti A, et al. IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol. 2006;24(4):400–6.PubMedGoogle Scholar
- 47.FitzGerald GA. Dipyridamole. N Engl J Med. 1987;316(20):1247–57.CrossRefGoogle Scholar
- 48.Patrono C, Coller B, Dalen JE, Fuster V, Gent M, Harker LA, et al. Platelet-active drugs: the relationships among dose, effectiveness, and side effects. Chest. 1998;114(5 Suppl):234S–64S.Google Scholar
- 49.Monagle P, Chan AKCKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S–801S.CrossRefGoogle Scholar
- 50.Ishack S, Mediero A, Wilder T, Ricci JL, Cronstein BN. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater. 2017;105(2):366–75.CrossRefGoogle Scholar
- 51.Slater BJ, Kwan MD, Gupta DM, Lee JK, Longaker MT. The role of regional posterior frontal dura mater in the overlying suture morphology. Plast Reconstr Surg. 2009;123(2):463–9.CrossRefGoogle Scholar
- 52.Coelho PG, Jimbo R, Tovar N, Bonfante EA. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater. 2015;31(1):37–52.CrossRefGoogle Scholar
- 53.Weinand C, Neville CM, Weinberg E, Tabata Y, Vacanti JP. Optimizing biomaterials for tissue engineering human bone using mesenchymal stem cells. Plast Reconstr Surg. 2016;137(3):854–63.CrossRefGoogle Scholar
- 54.Cooper GM, Miller ED, DeCesare GE, Usas A, Lensie EL, Bykowski MR, et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A. 2010;16(5):1749–59.CrossRefGoogle Scholar