Application of Bird Swarm Algorithm for Solution of Optimal Power Flow Problems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 772)


Incorporating fluctuant and intermittent nature wind power and solar photovoltaic (PV) power in the power system lead to significant challenges for system planning and operation which are risen from uncertainties associated with renewable energy. This paper placed emphasis on OPF problem. Bird swarm algorithm (BSA) is employed to optimize power generation cost in power system network with handling the uncertainty of both wind power and solar PV power. To examine the effectiveness and accuracy of the BSA, the modified IEEE 30-bus system with two traditional thermal generators (TGs), two windfarms and two solar PV units is utilized.


Bird Swarm Algorithm Optimal Power Flow Wind power Solar PV power Uncertainty 


  1. 1.
    Villanueva, D., Feijoo, A., Pazos, J.L.: Probabilistic load flow considering correlation between generation, loads and wind power. Smart Grid Renew. Energy 2(01), 12 (2011)CrossRefGoogle Scholar
  2. 2.
    Qin, Z., Li, W., Xiong, X.: Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation. Appl. Energy 110, 285–294 (2013)CrossRefGoogle Scholar
  3. 3.
    Biswas, P.P., Suganthan, P.N., Amaratunga, G.A.: Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 148, 1194–1207 (2017)CrossRefGoogle Scholar
  4. 4.
    Abaci, K., Yamacli, V.: Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 79, 1–10 (2016)CrossRefGoogle Scholar
  5. 5.
    Daryani, N., Hagh, M.T., Teimourzadeh, S.: Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl. Soft Comput. 38, 1012–1024 (2016)CrossRefGoogle Scholar
  6. 6.
    Chaib, A.E., Bouchekara, H.R.E.H., Mehasni, R., Abido, M.A.: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int. J. Electr. Power Energy Syst. 81, 64–77 (2016)CrossRefGoogle Scholar
  7. 7.
    Bouchekara, H.R.E.H., Chaib, A.E., Abido, M.A., El-Sehiemy, R.A.: Optimal power flow using an improved colliding bodies optimization algorithm. Appl. Soft Comput. 42, 119–131 (2016)CrossRefGoogle Scholar
  8. 8.
    Mohamed, A.A.A., Mohamed, Y.S., El-Gaafary, A.A., Hemeida, A.M.: Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 142, 190–206 (2017)CrossRefGoogle Scholar
  9. 9.
    Bouchekara, H.R.E.H., Chaib, A.E., Abido, M.A.: Optimal power flow using GA with a new multi-parent crossover considering: prohibited zones, valve-point effect, multi-fuels and emission. Electr. Eng. 100(1), 151–165 (2018)CrossRefGoogle Scholar
  10. 10.
    Gacem, A., Benattous, D.: Hybrid genetic algorithm and particle swarm for optimal power flow with non-smooth fuel cost functions. Int. J. Syst. Assur. Eng. Manag. 8(1), 146–153 (2017)CrossRefGoogle Scholar
  11. 11.
    Panda, A., Tripathy, M.: Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm. Int. J. Electr. Power Energy Syst. 54, 306–314 (2014)CrossRefGoogle Scholar
  12. 12.
    Roy, R., Jadhav, H.T.: Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 64, 562–578 (2015)CrossRefGoogle Scholar
  13. 13.
    Shi, L., Wang, C., Yao, L., Ni, Y., Bazargan, M.: Optimal power flow solution incorporating wind power. IEEE Syst. J. 6(2), 233–241 (2012)CrossRefGoogle Scholar
  14. 14.
    Chang, T.P.: Investigation on frequency distribution of global radiation using different probability density functions. Int. J. Appl. Sci. Eng. 8(2), 99–107 (2010)Google Scholar
  15. 15.
    Meng, X.B., Gao, X.Z., Lu, L., Liu, Y., Zhang, H.: A new bio-inspired optimisation algorithm: bird swarm algorithm. J. Exp. Theor. Artif. Intell. 28(4), 673–687 (2016)CrossRefGoogle Scholar
  16. 16.
    Shargh, S., Mohammadi-ivatloo, B., Seyedi, H., Abapour, M.: Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties. Renew. Energy 94, 10–21 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Center for Advanced Studies in Engineering (CASE)IslamabadPakistan

Personalised recommendations