Advertisement

Apocynaceae

Apocynaceae Jussieu, Gen. Pl. 143 (1789) (Apocinae), nom. cons.
Asclepiadaceae Borkh. (1797) (Asclepiadeae), nom. cons.
Periplocaceae Schltr. (1905).
  • M. E. EndressEmail author
  • U. Meve
  • D. J. Middleton
  • S. Liede-Schumann
Chapter
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 15)

Abstract

Woody climbers, vines, perennial herbs, trees or shrubs, more rarely annuals, sometimes with large water-storing tubers or a xylopod, sometimes succulent, with large grappling hooks and/or tendrils in several lianoid genera of Willughbeieae; latex in non-articulated laticifers present, most commonly white, but in some genera usually translucent and in others yellowish or reddish. Leaves simple and usually entire, very rarely dentate or repand, usually isophyllous, but often anisophyllous in Tabernaemontaneae-Tabernaemontiinae, sometimes with distinctly different juvenile and adult foliage, normally petiolate, sometimes sessile, usually opposite, less frequently alternate or whorled (whorled phyllotaxis characteristic for a number of Rauvolfioid genera); stipules usually absent or small and caducous, sometimes enlarged and fused into dentate interpetiolar collars (a few Periplocoid genera), commonly with interpetiolar lines or ridges, sometimes the petioles of a leaf pair connate at the node, forming a short ocrea, which may be expanded into small intrapetiolar flaps clasping the stem (Tabernaemontaneae), almost always with colleters in the axil of the leaf, sometimes on the petiole, in a cluster adaxially at the juncture of petiole and lamina or along the midrib above, occasionally with abaxial domatia in the axils of the secondary veins (mainly in Apocynoids). Flowers perfect, rarely functionally dioecious, often scented, sessile or more commonly pedicellate, in solitary or more commonly in axillary, extra-axillary or terminal multi-flowered cymes, panicles or thyrses, sometimes appearing as an axillary fascicle. Perianth almost always actinomorphic, very rarely slightly zygomorphic; calyx almost always 5- (rarely 4- or 6–7-)merous, lobes normally quincuncially arranged, synsepalous or aposepalous, commonly with colleters, in Periplocoideae, Secamonoideae and Asclepiadoideae these are usually in the sinuses, but in some Rauvolfioids and several Apocynoids colleters in a continuous ring, in multiple rows in some Tabernaemontaneae and Hunterieae, or a single antesepalous colleter (especially in Echiteae), and in several genera of Rauvolfioids and Apocynoids colleters are absent; corolla sympetalous, rarely apopetalous (a few Ceropegieae), salverform, infundibuliform, tubular, urceolate or rotate, lobes almost always 5 (very rarely 4), usually contorted in bud, either dextrorse or sinistrorse, more rarely valvate; corolline or gynostegial coronas often present; stamens 5 (rarely 4), filaments mostly straight, sometimes geniculate, sometimes connate around the style (some species of Forsteronia, Thoreauea), sometimes coiled around the style (Dewevrella, some species of Parsonsia and Thenardia), inserted on the corolla tube, on prominent staminal feet (broadened filament base fused with corolla tube) or forming a staminal tube, included to exserted; anthers introrse, rarely latrorse, in almost all Apocynoids, Secamonoideae and Asclepiadoideae with highly elaborated and lignified guide rails (lignified guide rails absent in most Rauvolfioids and in Periplocoideae) and often with an apical connective appendage, thecae 4, unequal in most Apocynoids, with dorsal ones smaller through presence of guide rails, reduced to 2 in Asclepiadoideae, dehiscence longitudinal, attached to the style-head forming a gynostegium (gynostegium absent in Rauvolfioids); nectaries in alternistaminal pockets on the staminal tube, on sides of staminal feet or 5 (rarely 2) lobes encircling the base of the ovary, these often fused to varying degrees into an (often deeply lobed) ring (in some Rauvolfioids and early-branching Apocynoids nectaries are adnate to the outer wall of the ovary at the base or are sometimes nonfunctional or absent); gynoecium normally of two carpels (very rarely up to five); ovary mostly apocarpous, sometimes congenitally (Rauvolfioids only) or postgenitally syncarpous (several Apocynoids), in some genera only one carpel developing, superior to subinferior; placentation marginal when the ovary is apocarpous, parietal or axile when syncarpous, when apocarpous upper part of the carpels fusing postgenitally to form a complex style-head that produces adhesive for pollen transport, with a pollen-trapping basal collar and/or pollen-presenting upper crest present in many Rauvolfioids and Apocynoids; stigma mostly on the underside of the style-head, often restricted to five chambers behind the guide rails, but style-head scarcely morphologically differentiated and nearly uniformly receptive in some Rauvolfioids; adhesive a sticky foam or mucilage, or differentiated into five translators with a scoop-like pollen receptacle and sticky base, or as five hard clips (corpuscles) usually accompanied by five pairs of flexible arms (caudicles) forming a pollinarium. Fruit in Rauvolfioids diverse: drupes, berries, follicles or capsules; seeds usually without a coma, naked, arillate, or winged or fimbriate at the margin very rarely with a coma (Haplophyton); in the remainder of the family, fruit almost always a pair of ventrally dehiscent follicles (often only one due to abortion or due to postgenital fusion; rarely a septicidally dehiscent capsule) with small seeds with a micropylar coma, rarely with a chalazal coma, coma at both ends (only in early-branching Apocynoids), or fringed with long trichomes circumferentially (a few Periplocoid and Hoya species), or without a coma.

Selected Bibliography

  1. Abe, F., Yamauchi, T. 1985. Affinosides M and K, cardenolide glycosides from seeds of Anodendron affine (Anodendron V). Chem. Pharm. Bull. 33: 847–852. CrossRefGoogle Scholar
  2. Abe, F., Yamauchi, T. 1989. Pregnane and pregnane glycosides from Trachelospermum liukiuense. Chem. Pharm. Bull. 37: 33–35.CrossRefGoogle Scholar
  3. Abe, F., Yamauchi, T. 1994. Indole alkaloids from leaves and stems of Leuconotis eugenifolius. Phytochemistry 35: 169–171.CrossRefGoogle Scholar
  4. Abisch, E., Reichstein, T. 1962. Orientierende chemische Untersuchungen einiger Asclepiadaceen und Periplocaceen. Helv. Chim. Acta 45: 2090–2116.CrossRefGoogle Scholar
  5. Abrahamczyk, S., Kessler, M., 2010. Hummingbird diversity, food niche characters, and assemblage composition along a latitudinal precipitation gradient in the Bolivian lowlands. J. Ornithol. 151: 615–625. doi:  https://doi.org/10.1007/s10336-010-0496-x
  6. Albers, F., Meve, U. 1997. Taxonomic Groups: Asclepiadaceae. In: Oldfield, S. (ed.) Status Survey and Conservation Action Plan: Cactus and succulent plants. Cambridge: IUCN, pp. 14–17 & 159–163.Google Scholar
  7. Albers, F., Meve, U. 2001. A karyological survey of Asclepiadoideae, Periplocoideae and Secamonoideae, and evolutionary considerations within Apocynaceae s.l. Ann. Missouri Bot. Gard. 88: 624–656.CrossRefGoogle Scholar
  8. Albers, P., van der Maesen, L.J.G. 1994. Pollination of Apocynaceae. Wageningen Agric. Univ. Pap. 94: 61–81.Google Scholar
  9. Ali, T., Ali, S.I. 1996. Andromonoecy in Glossonema varians (Stocks) Hook.f. (Asclepiadaceae). Pakistan J. Bot. 28(1): 25–29.Google Scholar
  10. Alper, K.R., Lotsof, H.S., Kaplan, C.D. 2008. The ibogaine medical subculture. J. Ethnopharmacol. 115: 9–24.PubMedCrossRefGoogle Scholar
  11. Alvarado-Cárdenas, L.O., Ochoterena, H. 2007. A phylogenetic analysis of the CascabelaThevetia species complex (Plumerieae, Apocynaceae) based on morphology 1. Ann. Missouri Bot. Gard. 94: 298–323. doi:  https://doi.org/10.3417/0026-6493(2007)94[298:APAOTC]2.0.CO;2
  12. Alvarado-Cárdenas, L.O., Villaseñor, J. L., López-Mata, L., Cadena, J., Ortiz, E. 2017. Systematics, distribution and conservation of Cascabela (Apocynaceae: Rauvolfioideae: Plumerieae) in Mexico. Pl. Syst. Evol. 303: 337–369. doi:  https://doi.org/10.1007/s00606-016-1375-6
  13. APG IV (Angiosperm Phylogeny Group IV) 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181: 1–20.CrossRefGoogle Scholar
  14. Aremu, A.O., Cheesman, L., Finnie, J.F., Van Staden, J. 2011. Mondia whitei (Apocynaceae): A review of its biological activities, conservation strategies and economic potential. S. African J. Bot. 77: 960–971. doi:  https://doi.org/10.1016/j.sajb.2011.06.010
  15. Arenas, P. 1999. Morrenia odorata (Asclepiadaceae), an edible plant of the Gran Chaco. Econ. Bot. 53: 89–97.CrossRefGoogle Scholar
  16. Astaras, C., Waltert, M. 2010. What does seed handling by the drill tell us about the ecological services of terrestrial cercopithecines in African forests? Animal Conserv. 13: 568–578.CrossRefGoogle Scholar
  17. Baas, P., Werker, E., Fahn, A. 1983. Some ecological trends in vessel characters. Int. Assoc. Wood Anat. Bull., n.s. 4: 141–159.Google Scholar
  18. Backlund, M., Oxelman, B., Bremer, B. 2000. Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Amer. J. Bot. 87: 1029–1043.CrossRefGoogle Scholar
  19. Bandara, V., Weinstein, S.A., White, J., Eddleston, M. 2010. A review of the natural history, toxicology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning. Toxicon 56: 273–281.PubMedCrossRefGoogle Scholar
  20. Baranzelli, M.C., Sérsic, A.N., Cocucci, A.A. 2014. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae). J. Evol. Biol. 27: 724–736. doi:  https://doi.org/10.1111/jeb.12341
  21. Barink, M.M. 1983. A revision of Pleioceras, Stephanostema and Schizozygia. Series of revisions of Apocynaceae, XII. Meded. Landbouwhogeschool Wageningen 83-7: 21–53.Google Scholar
  22. Barman, C., Singh, V.K., Das, S., Tandon, R. 2018. Floral contrivances and specialized pollination mechanism confer strong influence to elicit mixed-mating in Wrightia tomentosa (Apocynaceae). Pl. Biol., 2018 Jan. 13. doi:  https://doi.org/10.1111/plb.12690
  23. Beaune, D., Fruth, B., Bollache, L., Hohmann, G., Bretagnolle, F. 2013. Doom of the elephant-dependent trees in a Congo tropical forest. Forest Ecol. Manag. 295: 109–117.CrossRefGoogle Scholar
  24. Beentje, H.J. 1982. A monograph on Strophanthus DC. (Apocynaceae). Meded. Landbouwhogeschool Wageningen 82-4: 1–191.Google Scholar
  25. Behnke, H.-D. 1981. Sieve-element characters. Nord. J. Bot. 1: 381–400.CrossRefGoogle Scholar
  26. Bell, C.D., Soltis, D.E., Soltis, P.S. 2010. The age and diversification of the angiosperms re-revisited. Amer. J. Bot. 97: 1296–1303.CrossRefGoogle Scholar
  27. Bentham, G. 1876. Asclepiadaceae. In: Bentham, G., Hooker, J.D. (eds.) Genera Plantarum, Vol. 2(2). London: Williams and Norgate, pp. 739–785.Google Scholar
  28. Bester, S.P., Nicholas, A. 2016. Periglossum podoptyches (Apocynaceae-Asclepiadoideae), a new species from KwaZulu-Natal province, South Africa. Phytotaxa 282: 28–36.CrossRefGoogle Scholar
  29. Bhatnagar, S. 1986. On insect adaptations for pollination in some asclepiads on Central India. In: Kapil, R.P. (ed.) Pollination Biology – an Analysis. New Delhi: Inter-India Publications, pp. 37–57.Google Scholar
  30. Bierer, D.E., Dubenko, L.G., Zhang, P., Lu, Q., Imbach, P.A., Garofalo, A.W., Phuan, P.-W., Fort, D.M., Litvak, J., Gerber, R.E., Sloan, B., Luo, J., Cooper, R., Reaven, G.M. 1998. Antihyperglycemic activities of Cryptolepine analogues: An ethnobotanical lead structure isolated from Cryptolepis sanguinolenta. J. Med. Chem. 41: 2754–2764.PubMedCrossRefGoogle Scholar
  31. Birkinshaw, C. 2001. Fruit characteristics of species dispersed by the black lemur (Eulemur macaco) in the Lokobe Forest, Madagascar. Biotropica 33: 478–486.CrossRefGoogle Scholar
  32. Bisset, N.G. 1958. The occurrence of alkaloids in the Apocynaceae. Ann. Bogoriensis 3: 105–236.Google Scholar
  33. Bisset, N.G. 1961. The occurrence of alkaloids in the Apocynaceae. Part II. A review of recent developments. Ann. Bogoriensis 4: 65–144.Google Scholar
  34. Bisset, N.G. 1987. Phytochemistry of Nerium L. Agric. Univ. Wageningen Pap. 87-2: 27–38.Google Scholar
  35. Bisset, N.G. 1989. Arrow and dart poisons. J. Ethnopharmacol. 25: 1–41.PubMedCrossRefGoogle Scholar
  36. Bisset, N.G. 1991. One man’s poison, another man’s medicine? J. Ethnopharmacol. 32: 71–81.PubMedCrossRefGoogle Scholar
  37. Bisset, N.G. 1992. Uses, chemistry and pharmacology of Malouetia (Apocynaceae, subf. Apocynoideae). J. Ethnopharmacol. 36: 43–50. doi:  https://doi.org/10.1016/0378-8741(92)90059-Z
  38. Boiteau, P., Allorge, L. 1978. Morphologie et biologie florales des Apocynacées: I. différences essentielles entre les Plumérioidées et les Tabernaemontanoidées. Adansonia Sér. 2, 17: 305–216.Google Scholar
  39. Bonjean, K., De Pauw-Gillet, M.C., Defresne, M.P., Colson, P., Houssier, C., Dassonneville, L., Bailly, C., Greimers, R., Wright, J., Quétin-Leclerq, J., Tits, M., Angenot, L. 1998. The DNA intercalating alkaloid Cryptolepine interferes with Topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells. Biochemistry 37: 5136–5146.PubMedCrossRefGoogle Scholar
  40. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J. Chem. Ecol. 16: 165–185.  https://doi.org/10.1007/BF01021277 PubMedCrossRefGoogle Scholar
  41. Boppré, M. 1995. Pharmakophagie: Drogen, Sex und Schmetterlinge. Biol. Unserer Zeit 25: 8–17.  https://doi.org/10.1002/biuz.19950250103 CrossRefGoogle Scholar
  42. Boppré, M., Schneider, D. 1985. Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone bio-synthesis in Creatonotos moths (Lep.: Arctiidae). J. Comp. Physiol. 157: 569–577.  https://doi.org/10.1007/BF01351351 CrossRefGoogle Scholar
  43. Brand, E., Leon, C., Nesbitt, M., Guo, P., Huang, R.-Q., Chen, H.D., Liang, L., Zhao, Z. 2017. Economic botany collections: A source of material evidence for exploring historical changes in Chinese medicinal materials. J. Ethnopharmacol. 200: 209–227.PubMedCrossRefGoogle Scholar
  44. Bremer, B., Jansen, R.K., Oxelman, B., Backlund, M., Lantz, H., Ki-Joong, K. 1999. More characters or more taxa for a robust phylogeny – case study from the coffee family (Rubiaceae). Syst. Biol. 48: 413–435.PubMedCrossRefGoogle Scholar
  45. Britt, A., Iambana, B.R. 2003. Can captive-bred Varecia variegata variegata adapt to a natural diet on release to the wild? Int. J. Primatol. 24: 987–1005.CrossRefGoogle Scholar
  46. Brown, R. 1810. On the Asclepiadeae, a natural order of plants separated from the Apocinae of Jussieu. Pre-print of: Mem. Wern. Nat. Hist. Soc. 1: 12–78 (1811).Google Scholar
  47. Brown, N.E. 1901. Lobostephanus palmatus N.E. Brown. Hook. Icon. Pl. 27: pl. 2692. In: Thiselton-Dyer, W.T. (ed.). London: Dulau & Co.Google Scholar
  48. Bruyns, P.V. 1999. The systematic position of Eustegia R.Br. (Apocynaceae - Asclepiadoideae). Bot. Jahrb. Syst. 121: 19–44.Google Scholar
  49. Bruyns, P.V. 2002. Monograph of Orbea and Ballyanthus (Apocynaceae-Asclepiadoideae-Ceropegieae). Syst. Bot. Monogr. 63: 1–196.CrossRefGoogle Scholar
  50. Bruyns, P.V. 2005. Stapeliads of Southern Africa and Madagascar, 1st ed. Hatfield, South Africa: Umdaus Press.Google Scholar
  51. Bruyns, P.V. 2010. A new species of Caralluma (Apocynaceae-Asclepiadoideae-Ceropegieae) from the Yemen. S. African J. Bot. 76: 249–251.CrossRefGoogle Scholar
  52. Bruyns, P.V., Klak, C. 2006. A systematic study of the Old World genus Fockea (Apocynaceae-Asclepiadoideae). Ann. Missouri Bot. Gard. 93: 535–564.CrossRefGoogle Scholar
  53. Bruyns, P.V., Klak, C. 2009. The rediscovery of Schizostephanus gossweileri and its phylogenetic position. S. African J. Bot. 75: 532–536.CrossRefGoogle Scholar
  54. Bruyns, P.V., Klak, C., Hanáček, P. 2014. Evolution of the stapeliads (Apocynaceae–Asclepiadoideae) – repeated major radiation across Africa in an Old World group. Mol. Phyl. Evol. 77: 251–263.CrossRefGoogle Scholar
  55. Bruyns, P.V., Klak, C., Hanáček, P. 2015. Recent radiation of Brachystelma and Ceropegia (Apocynaceae) across the Old World against a background of climatic change. Mol. Phyl. Evol. 90: 49–66.CrossRefGoogle Scholar
  56. Bruyns, P.V., Klak, C., Hanáček, P. 2017. A revised, phylogenetically-based concept of Ceropegia (Apocynaceae). S. African J. Bot. 112 399–2436.CrossRefGoogle Scholar
  57. Buhner, S.H. 2012. Herbal Antibiotics (2nd ed.). Massachusetts: Storey Publ.Google Scholar
  58. Burge, D.O., Mugford, K., Hastings, A.P., Agrawal, A.A. 2013. Phylogeny of the plant genus Pachypodium (Apocynaceae). PeerJ 1: 1–20. doi:  https://doi.org/10.7717/peerj.70
  59. Burkill, H.M. 1985. Apocynaceae, Asclepiadaceae, The useful plants of West tropical Africa, Vol. 1, 2nd ed. Richmond: Royal Bot. Gard. Kew, pp. 135–193, 217–241.Google Scholar
  60. Burrows, G.E., Tyrl, R.J. 2013. Chapter 9, Apocynaceae. Toxic plants of North America, 2nd ed. Ames: Wiley-Blackwell, pp. 81–126.Google Scholar
  61. Burzynski, E.A., Minbiole, K.P.C., Livshultz, T. 2015. New sources of lycopsamine-type pyrrolizidine alkaloids and their distribution in Apocynaceae. Biochem. Syst. Ecol. 59: 331–339.  https://doi.org/10.1016/j.bse.2015.02.006 CrossRefGoogle Scholar
  62. Calviño, C.I., Fernandez, M., Ezcurra, C. 2014. Is the southern South American genus Tweedia (Apocynaceae: Asclepiadoideae) monophyletic? Molecular phylogenies, distribution and taxonomy. Taxon 63: 1265–1274.CrossRefGoogle Scholar
  63. Candolle, A.P. de 1844. Apocynaceae. In: Candolle, A.P. de (ed.) Prodromus systematis naturalis regni vegetabili, Vol. 8. Paris: Treuttel & Wurtz, pp. 317–489.Google Scholar
  64. Cant, J.G.H. 1979. Dispersal of Stemmadenia donnell-smithii by birds and monkeys. Biotropica 11: 122.CrossRefGoogle Scholar
  65. Carlquist, S. 1984.Vessel grouping in dicotyledon wood: Significance and relationships to imperforate tracheary elements. Aliso 10: 505–525.CrossRefGoogle Scholar
  66. Chang, N., Luo, Z., Li, D., Song, H. 2017. Indigenous uses and pharmacological activity of traditional medicinal plants in Mount Taibai, China. J. Evid. Based Complementary Altern. Med. 2017, 11 pp. doi:  https://doi.org/10.1155/2017/8329817
  67. Chaturvedi, S.K. 1988. Abiotic Pollination in Tylophora hirsuta Wight (Asclepiadaceae). Asklepios 45: 58–62.Google Scholar
  68. Chen, Z.S., Lee, G.H., Kuo, Y.H. 1993. Disformone and Dischidiol from Dischidia formosana. Phytochemistry 34: 783–786.CrossRefGoogle Scholar
  69. Chua, L.S.L., Horsten, S.F.A.J. 2001. Tabernaemontana. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 530–538. Leiden: Backhuys.Google Scholar
  70. Chuba, D., Goyder, D.J., Chase, J.M., Fishbein, M. 2017. Phylogenetics of the African Asclepias complex (Apocynaceae) based on three plastid DNA regions. Syst. Bot. 42: 148–159. doi:  https://doi.org/10.1600/036364417X694539
  71. Church, A.H. 1908. Types of floral mechanism, Part 1, Types I-XII. Oxford: Clarendon Press. doi: https://archive.org/details/cu31924000658413
  72. Civeyrel, L. 1994. Variation et évolution des types polliniques du genre Secamone (Secamonoideae, Asclepiadaceae). C.R. Acad. Sci. Paris 317: 1159–1165.Google Scholar
  73. Civeyrel, L. 1995. Pollen morphology and ultrastructure of the genus Secamone in Africa. 2nd Symposium on African Palynology, Tervuren (Belgium), 1995, Publ. Occas. CIFEG, Orléans, CIFEG: 207–215.Google Scholar
  74. Civeyrel, L., Rowe, N. 2001. Phylogenetic relationships of Secamonoideae based on plastid gene matK, morphology and biomechanics. Ann. Missouri Bot. Gard. 88: 583–602.CrossRefGoogle Scholar
  75. Civeyrel, L., Le Thomas, A., Ferguson, K., Chase, M.W. 1998. Critical reexamination of palynological characters used to delimit Asclepiadaceae in comparison to molecular phylogeny obtained from plastid matK sequences. Mol. Phyl. Evol. 9: 517–527.CrossRefGoogle Scholar
  76. Cocucci, A.A., Marino, S., Baranzelli, M., Wiemer, A.P., Sérsic, A. 2014. The buck in the milkweed: evidence of male–male interference among pollinaria on pollinators. New Phytol. 203: 280–286. doi:  https://doi.org/10.1111/nph.12766
  77. Colegate, S.M., Gardner, D.R., Betz, J.M., Fischer, O.W., Liede-Schumann, S., Boppré, M. 2016. Pro-toxic 1, 2-dehydropyrrolizidine alkaloid esters, including unprecedented 10-membered macrocyclic diesters, in the medicinally-used Alafia cf. caudata and Amphineurion marginatum (Apocynaceae: Apocynoideae: Nerieae and Apocyneae). Phytochem. Anal. 27: 257–276. doi:  https://doi.org/10.1002/pca.2624
  78. Collinson, M.E., Manchester, S.R., Wilde, V., Hayes, P. 2010. Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bull. Geosci. 85: 155–162.CrossRefGoogle Scholar
  79. Collinson, M.E., Manchester, S.R., Wilde, V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandlungen der Senckenberg Gesellschaft für Naturforschung, Band 570. Stuttgart: Schweizerbart, p. 20.
  80. Coppen, J.J.W., Cobb, A.I. 1983. The occurrence of iridoids in Plumeria and Allamanda. Phytochemistry 22: 125–128.CrossRefGoogle Scholar
  81. Corlett, R.T., Lucas, P.W. 1990. Alternative seed-handling strategies in primates: seed-spitting by long-tailed macaques (Macaca fascicularis). Oecologia 82: 166–171.PubMedCrossRefGoogle Scholar
  82. Corner, E.J.H. 1976. The Seeds of Dicotyledons, Vols.1, 2. Cambridge: Cambridge Univ. Press, 1: pp. 70–73, 2: t. 19–23.Google Scholar
  83. Cronquist, A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press.Google Scholar
  84. Cullen, J. 1978. A preliminary survey of ptyxis (vernation) in the Angiosperms. Notes Roy. Bot. Gard. Edinb. 37: 161–214.Google Scholar
  85. Darrault, R.O., Schlindwein, C. 2005. Limited fruit production in Hancornia speciosa (Apocynaceae) and pollination by nocturnal and diurnal insects. Biotropica 37: 381–388.CrossRefGoogle Scholar
  86. Davis, A.R., Gunning, B.E.S. 1992. The modified stomata of the floral nectary of Vicia faba L. 1. Development, anatomy and ultrastructure. Protoplasma 166: 134–152.CrossRefGoogle Scholar
  87. Decaisne, M.J. 1844. Asclepiadaceae. In: de Candolle, A.P. (ed.) Prodromus Systematis Naturalis Regni Vegetabilis, Vol. 8. Paris: Treuttel & Würtz, pp. 490–684.Google Scholar
  88. Defler, T.R., Defler, S.B. 1996. Diet of a group of Lagothrix lagothricha lagothricha in southeastern Colombia. Int. J. Primatol. 17: 161–190.CrossRefGoogle Scholar
  89. De Kruif, A.P.M. 1983. Series of revisions of Apocynaceae XI. A revision of Motandra A. DC. (Apocynaceae). Meded. Landbouwhogeschool Wageningen 83-7: 1–20.Google Scholar
  90. De Kruif, A.P.M. 1985. A revision of Oncinotis Benth. (Apocynaceae). Series of revisions of Apocynaceae XVI. Wageningen Agric. Univ. Pap. 85.2: 1–45.Google Scholar
  91. De Luca, V., Salim, V., Atsumi, S.M., Yu, F. 2012. Mining the biodiversity of plants: A revolution in the making. Science 336: 1658–1661.PubMedCrossRefGoogle Scholar
  92. Demeter, K. 1922. Vergleichende Asclepiadeenstudien. Flora 115: 130–176.Google Scholar
  93. Denis, M.S., Capuccino, N. 2004. Reproductive biology of Vincetoxicum rossicum (Kleo.) Barb. (Asclepiadaceae), an invasive alien in Ontario. J. Torrey Bot. Soc. 131: 8–15.CrossRefGoogle Scholar
  94. Domingos-Melo, A., de Lima Nadia, T., Machado, I.C. 2017. Complex flowers and rare pollinators: Does ant pollination in Ditassa show a stable system in Asclepiadoideae (Apocynaceae)? Arthropod Pl. Interact. doi:  https://doi.org/10.1007/s11829-017-9499-3
  95. Dutt, H.C., Singh, S., Avula, B., Khan, I.A., Bedi, Y.S. 2012. Pharmacological review of Caralluma R.Br. with special reference to appetite suppression and anti-obesity. J. Med. Food 15: 108–119. doi:  https://doi.org/10.1089/jmf.2010.1555
  96. Dyer, R.A. 1933. Fockea cylindrica R.A. Dyer. Hook. Icon. Pl. 34: pl. 3221. In: Hill, A.W. (ed.) London: Dulau & Co.Google Scholar
  97. Edgar, J.A. 1984. Parsonsieae: Ancestral larval food plants of the Danainae and Ithomiinae. In: Vane-Wright, R.I., Ackery, P.R. (eds.) The biology of butterflies. London: Academic Press, pp. 91–93.Google Scholar
  98. Eisikowitch, D. 1986. Morpho-ecological aspects on the pollination of Calotropis procera (Asclepiadaceae) in Israel. Pl. Syst. Evol. 152: 185–194.CrossRefGoogle Scholar
  99. El-Gazzar, A., Hamza, M.K., Badawi, A.A. 1974. Pollen morphology and taxonomy of Asclepiadaceae. Pollen and Spores 16: 227–238.Google Scholar
  100. Endlicher, S. 1838. Asclepiadaceae, Genera Plantarum secundum ordines naturales disposita Vindobonae. Vienna: Beck, pp 586–598.Google Scholar
  101. Endress, M.E. 2001. Apocynaceae and Asclepiadaceae: United they stand. Haseltonia 8: 2–9.Google Scholar
  102. Endress, M.E., Bruyns, P.V. 2000. A revised classification of the Apocynaceae s. l. Bot. Rev. 66: 1–56. doi:  https://doi.org/10.1007/BF02857781
  103. Endress, M.E., Hesse, M., Nilsson, S., Guggisberg, A., Zhu, J.-P. 1990. The systematic position of the Holarrheninae (Apocynaceae). Pl. Syst. Evol. 171: 157–185.  https://doi.org/10.1007/BF00940603 CrossRefGoogle Scholar
  104. Endress, M.E., Sennblad, B., Nilsson, S., Civeyrel, L., Chase, M.W., Huysmans, S., Grafström, E., Bremer, B. 1996. A phylogenetic analysis of Apocynaceae s. str. and some related taxa in the Gentianales: a multidisciplinary approach. Opera Bot. Belg. 7: 59–102.  https://doi.org/10.3417/0026-6493(2007)94[1:APAOAA]2.0.co;2
  105. Endress, M.E., Lorence, D.H., Endress, P.K. 1997. Structure and development of the gynoecium of Lepinia marquisensis and its systematic position in the Apocynaceae. Allertonia 7: 267–272.Google Scholar
  106. Endress, M.E., van der Ham, R.W.J.M., Nilsson, S., Civeyrel, L., Chase, M.W., Sennblad, B., Potgieter, K., Joseph, J., Powell, M., Lorence, D., Zimmerman, Y.-M., Albert, V.A. 2007a. A phylogenetic analysis of Alyxieae (Apocynaceae) based on rbcL, matK, trnL intron, trnL-F spacer sequences, and morphological characters. Ann. Missouri Bot. Gard. 94: 1–35.CrossRefGoogle Scholar
  107. Endress, M.E., Liede-Schumann, S., Meve, U. 2007b. Advances in Apocynaceae: The enlightenment, an introduction. Ann. Missouri Bot. Gard. 94: 259–267. doi:  https://doi.org/10.3417/0026-6493(2007)94[259:AIATEA]2.0.CO;2
  108. Endress, M.E., Liede-Schumann, S., Meve, U. 2014. An updated classification for Apocynaceae. Phytotaxa 159: 175–194.  https://doi.org/10.11646/phytotaxa.159.3.2 CrossRefGoogle Scholar
  109. Erdtman, G. 1952. Pollen morphology and plant taxonomy. Stockholm: Almqvist and Wiksell.CrossRefGoogle Scholar
  110. Everist, S.L. 1981. Asclepiadaceae. In: Poisonous Plants of Australia, 2nd ed. Sydney: Angus and Robertson, pp. 94–109.Google Scholar
  111. Ezcurra, C., Endress, M.E., Leeuwenberg, A.J.M. 1992. Apocynaceae. In: Spichiger, R., Ramella, L. (eds.) Flora del Paraguay 17. Geneva: Editions de Conservatoire et Jardin Botanique de la Ville de Genève.Google Scholar
  112. Fahn, A. 1979. Secretory tissues in plants. New York, NY: Academic Press.Google Scholar
  113. Fallen, M.E. 1983. A systematic revision of Anechites (Apocynaceae). Brittonia 35: 222–231. doi:  https://doi.org/10.2307/2806018
  114. Fallen, M.E. 1985. The gynoecial development and systematic position of Allamanda (Apocynaceae). Amer. J. Bot. 72: 572–579.CrossRefGoogle Scholar
  115. Fallen, M.E. 1986. Floral structure in the Apocynaceae: morphological, functional, and evolutionary aspects. Bot. Jahrb. Syst. 106: 245–286.Google Scholar
  116. Farinaccio, M.A., de Mello-Silva, R. 2006. Oxypetalum gyrophyllum and O. oblanceolatum, new species of Asclepiadoideae (Apocynaceae) from Brazil, and a key for the O. insigne group. Novon 16: 235–239.CrossRefGoogle Scholar
  117. Farrell, B.D., Mitter, C. 1998. The timing of insect/plant diversification: might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. 63: 553–577.Google Scholar
  118. Feinsinger, P. 1978. Ecological interactions between plants and hummingbirds in a successional tropical community. Ecol. Monogr. 48: 269–287.CrossRefGoogle Scholar
  119. Fishbein, M. 2001. Evolutionary innovation and diversification in the flowers of Asclepiadaceae. Ann. Missouri Bot. Gard. 88: 603–623.CrossRefGoogle Scholar
  120. Fishbein, M., Stevens, W.D. 2005. Resurrection of Seutera Reichenbach (Apocynaceae – Asclepiadoideae). Novon 15: 531–533.Google Scholar
  121. Fishbein, M., Venable, D.L. 1996. Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77: 1061–1073.CrossRefGoogle Scholar
  122. Fishbein, M., Chuba, D., Ellison, C., Mason-Gamer, R.J., Lynch, S.P. 2011. Phylogenetic relationships of Asclepias (Apocynaceae) estimated from non-coding cpDNA sequences. Syst. Bot. 36: 1008–1023.CrossRefGoogle Scholar
  123. Flora of China Editorial Committee. 1999. Flora of China Illustrations, Volume (16), Gentianaceae through Boraginaceae. Beijing and St. Louis: Science Press, Missouri Botanical Garden Press, pp. 1–383.Google Scholar
  124. Fonseca, L.C.N., Vizentin-Bugoni, J., Rech, A.R., Alves, M.A.A. 2015. Plant-hummingbird interactions and temporal nectar availability in a restinga from Brazil. An. Academica Bras. Ciên. 87: 206–2175.Google Scholar
  125. Forster, P.I. 1991a. A possible identification for “Pollinia attached to adult anopheloine mosquitoes from northern Australia”. Entomol. Soc. Queensland News Bull. 18: 113.Google Scholar
  126. Forster, P.I. 1991b. Host records (family Asclepiadaceae) for Euploea core corinna (W. S. Macleay) (Lepidoptera: Nymphalidae). Austral. Entomol. Mag. 18: 61–64.Google Scholar
  127. Forster, P.I. 1991c. A taxonomic revision of Sarcolobus R.Br. (Asclepiadaceae: Marsdenieae) in Australia and Papuasia. Austrobaileya 3: 335–360.Google Scholar
  128. Forster, P.I. 1992a. Pollination of Hoya australis (Asclepiadaceae) by Ocybadistes walkeri sothis (Lepidoptera: Hesperidae). Aust. Ent. Mag. 19: 39–44.Google Scholar
  129. Forster, P.I. 1992b. Insects associated with the flowers of Marsdenia cymulosa Benth. (Asclepiadaceae) and their possible role in pollination. Aust. Ent. Mag. 19: 45–58.Google Scholar
  130. Forster, P.I. 1992c. A taxonomic revision of Carissa (Apocynaceae) in Australia. Aust. Syst. Bot. 5: 581–591.CrossRefGoogle Scholar
  131. Forster, P.I. 1993. Conspectus of Cryptolepis R.Br. (Asclepiadaceae: Periplocoideae) in Malesia. Austrobaileya 4: 67–73.Google Scholar
  132. Forster, P.I. 1995. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papuasia). Austral. Syst. Bot. 8: 691–701.CrossRefGoogle Scholar
  133. Frye, T.C. 1901. Development of the pollen in some Asclepiadaceae. Bot. Gaz. 32: 315–331.CrossRefGoogle Scholar
  134. Fu, Y.H., He, H.P., Di, Y.T., Li, S.L, Zhang, Y., Hao, X.J. 2012. Mekongenines A and B, two new alkaloids from Bousigonia mekongensis. Tetradendron Letters 53: 3642–3646.CrossRefGoogle Scholar
  135. Fu, Y.H., Di, Y.T., He, H.P., Li, S.L, Zhang, Y., Hao, X.J. 2014. Angustifonines A and B, cytotoxic bisindole alkaloids from Bousigonia angustifolia. J. Nat. Prod. 7: 57–62. doi:  https://doi.org/10.1021/np4005823
  136. Gaillard, Y., Krishnamoorthy, A., Bevalot, F. 2004. Cerbera odollam: a ‘suicide tree’ and cause of death in the state of Kerala, India. J. Ethnopharmacol. 95: 123–126.PubMedCrossRefGoogle Scholar
  137. Galetto, L. 1997. Flower structure and nectar chemical composition in three Argentine Apocynaceae. Flora 192: 197–207.CrossRefGoogle Scholar
  138. Galil, J., Zernoni, M. 1965. Nectar system in Asclepias curassavica. Bot. Gaz. 126: 144–148.CrossRefGoogle Scholar
  139. Gautier-Hion, A., Michaloud, G. 1989. Are figs always keystone resources for tropical frugivorous vertebrates? A test in Gabon. Ecology 70: 1826–1833.CrossRefGoogle Scholar
  140. Gautier-Hion, A., Duplantier, J.-M., Quris, R., Feer, F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, P., Moungazi, A., Roussilhon, C., Thiollay, J.-M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia (Berlin) 65: 324–337.CrossRefGoogle Scholar
  141. Gentry, A.H., Dodson, C.H. 1987. Diversity and biogeography of Neotropical vascular epiphytes. Ann. Missouri Bot. Gard. 74: 205–233.CrossRefGoogle Scholar
  142. Gilani, S.A., Kikuchi, A., Shinwari, Z.K., Khattak, Z.I., Watanabe, K.N. 2007. Phytochemical, pharmacological and ethnobotanical studies of Rhazya stricta Decne. Phytotherapy Res. 21: 30–307.Google Scholar
  143. Goh, S.H., Ali, A.R.M., Wong, W.H. 1989. Alkaloids of Leuconotis griffithii and L. eugenifolia (Apocynaceae). Tetrahedron 45: 7899–7920.CrossRefGoogle Scholar
  144. Good, R. 1947. The geography of the flowering plants. London: Longmans, Green & Co.Google Scholar
  145. Good, R. 1952. An atlas of the Asclepiadaceae. New Phytol. 51: 198–209.CrossRefGoogle Scholar
  146. Govindchari, T.R. 1967. Tylophora Alkaloids. In: Manske, R.H.F. (ed.) The Alkaloids. New York: Academic Press, pp. 518–528.Google Scholar
  147. Goyder, D.J. 2004. An amplified concept of Philibertia Kunth (Apocynaceae: Asclepiadoideae), with a synopsis of the genus. Kew Bull. 59: 415–451. doi:  https://doi.org/10.2307/4110951
  148. Goyder, D.J. 2006. An overview of Asclepiad biogeography. In: Ghazanfar, S.A., Beentje, H.J. (eds.) Taxonomy and ecology of African plants, their conservation and sustainable use. Kew: Royal Botanic Gardens, pp 205–214.Google Scholar
  149. Goyder, D.J. 2009. A synopsis of Asclepias (Apocynaceae: Asclepiadoideae) in tropical Africa. Kew Bull. 64: 369–399.CrossRefGoogle Scholar
  150. Goyder, D., Nicholas, A., Liede-Schumann, S. 2007. Phylogenetic relationships in subtribe Asclepiadinae (Apocynaceae: Asclepiadoideae). Ann. Missouri Bot. Gard. 94: 423–434. doi:  https://doi.org/10.3417/0026-6493(2007)94[423:prisaa]2.0.co;2
  151. Haber, W.A. 1984. Pollination by deceit in a mass-flowering tropical tree Plumeria rubra (Apocynaceae). Biotropica 16: 269–275.CrossRefGoogle Scholar
  152. Haber, W.A., Frankie, G.W., Baker, H.G., Baker, I., Koptur, S. 1981. Ants like nectar. Biotropica 13: 211–214.CrossRefGoogle Scholar
  153. Hall, W.T.K. 1964. Plant toxicoses of tropical Australia. Austral. Veterin. J. 40: 176–182.CrossRefGoogle Scholar
  154. Hechem, V., Acheritobehere, L., Morrone, J.J. 2011a. Patrones de distribución de las especies de Cynanchum, Diplolepis y Tweedia (Apocynaceae: Asclepiadoideae) de América del Sur austral. Revista Geogr. Norte Grande 48: 45–60.CrossRefGoogle Scholar
  155. Hechem, V., Calviño, C.I., Ezcurra, C. 2011b. Molecular phylogeny of Diplolepis (Apocynaceae-Asclepiadoideae) and allied genera, and taxonomic implications. Taxon 60: 638–648.CrossRefGoogle Scholar
  156. Hegnauer, R. 1964. Chemotaxonomie der Pflanzen 3. Basel: Birkhäuser, pp. 124–163, 199–223.Google Scholar
  157. Hegnauer, R. 1970. Cardenolide und Bufadienolide (= Cardadienolide). Verbreitung und systematische Bedeutung. Pl. Med. 19: 137–153.Google Scholar
  158. Hegnauer, R. 1989. Chemotaxonomie der Pflanzen 8. Basel: Birkhäuser, pp. 48–60, 84–95. doi:  https://doi.org/10.1007/978-3-0348-9283-4
  159. Heiduk, A., Brake, I., von Tschirnhaus, M., Göhl, M., Jürgens, A., Johnson, A.E., Meve, U., Dötterl, S. 2016. Ceropegia sandersonii mimics attacked honeybees to attract kleptoparasitic flies for pollination. Curr. Biol. 26: 2787–2793.PubMedCrossRefGoogle Scholar
  160. Hendrian. 2001a. Strophanthus. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 519–523. Leiden: Backhuys.Google Scholar
  161. Hendrian. 2001b. Voacanga. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 582–585. Leiden: Backhuys.Google Scholar
  162. Hendrian, Middleton, D.J. 1999. Revision of Rauvolfia (Apocynaceae) in Malesia. Blumea 44: 449–470.Google Scholar
  163. Herrera, J. 1991. The reproductive biology of a riparian Mediterranean shrub, Nerium oleander L. (Apocynaceae). Bot. J. Linn. Soc. 106: 147–172.CrossRefGoogle Scholar
  164. Hong, L., Guo, Z.-H., Huang, K.F., Wei, S., Liu, B., Meng, S., Long, C. 2015. Ethnobotanical study on medicinal plants used by Maonan people in China. J. Ethnobiol. Ethnomed. 11: 32. doi:  https://doi.org/10.1186/s13002-015-0019-1
  165. Hu, Y.-J., Shen, X.-L., Mu, Q.-Z., Lu, Y., Zheng, Q.-T. 1992. Steroidal constituents from Amalocalyx yunnanensis. Phytochemistry 31: 2099–2102.PubMedCrossRefGoogle Scholar
  166. Hutchings, A.A. 1989. A survey and analysis of traditional medicinal plants as used by the Zulu, Xhosa and Sotho. Bothalia 19: 111–123.Google Scholar
  167. Ionta, G.M., Judd, W.S. 2007. Phylogenetic relationships in Periplocoideae (Apocynaceae s.l.) and insights into the origin of pollinia in the subfamily. Ann. Missouri Bot. Gard. 94: 360–375. doi:  https://doi.org/10.3417/0026-6493(2007)94[360:pripas]2.0.co;2
  168. Ivey, C.T., Lipow, S.R., Wyatt, R. 1999. Mating systems and interfertility of swamp milkweed (Asclepias incarnata ssp. incarnata and ssp. pulchra). Heredity 82: 25–35.CrossRefGoogle Scholar
  169. Jagtap, A.P., Singh, N.P. 1999. Fascicles of Flora of India: fascicle 24. Asclepiadaceae and Periplocaceae. Calcutta: Botanical Survey of India.Google Scholar
  170. Jensen, S.R. 1992. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Missouri Bot. Gard. 79: 284–302.CrossRefGoogle Scholar
  171. Johns, S.R., Lamberton, J.A., Price, J.R., Sioumis, A.A. 1968. Identification of coumarins isolated from Lepiniopsis ternatensis (Apocynaceae), Pterocaulon sphacelatum (Compositae), and Melicope melanophloia (Rutaceae). Aust. J. Chem. 21: 3079–3080.CrossRefGoogle Scholar
  172. Johri, B.M., Ambegaokar, K.M., Srivastava, P.S. 1992. Comparative Embryology of Angiosperms, Vol. 2. Berlin, Heidelberg: Springer.Google Scholar
  173. Joubert, L., Klak, C., Venter, A.M., Venter, H.J.T., Bruyns, P.V. 2016. A widespread radiation in the Periplocoideae (Apocynaceae): The case of Cryptolepis. Taxon 65: 487–501.CrossRefGoogle Scholar
  174. Judd, W.S., Sanders, R.W., Donoghue, M.J. 1994. Angiosperm family pairs: Preliminary phylogenetic analysis. Harvard Pap. Bot. 5: 1–51.Google Scholar
  175. Jürgens, A., Dötterl, S., Meve, U. 2006. The chemical nature of fetid floral odours in Stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol. 172: 452–468.PubMedCrossRefGoogle Scholar
  176. Jussieu, A.L. de. 1789. Genera Plantarum. Paris: Herissant.Google Scholar
  177. Kahn, A.P., Morse, D.H. 1991. Pollination germination and putative ovule penetration in self- and cross-pollinated common milkweed Asclepias syriaca. Amer. Midl. Naturalist 126: 61–67.CrossRefGoogle Scholar
  178. Kalimuthu, K., Prabakaran, R. 2013. Preliminary phytochemical screening and GC-MS analysis of methanol extract of Ceropegia pusilla. Int. J. Res. Appl. Nat. Soc. Sci. 1: 49–58.Google Scholar
  179. Kephart, S.R. 1981. Breeding systems in Asclepias incarnata L., A. syriaca L., and A. verticillata L. Amer. J. Bot. 68: 226–232.CrossRefGoogle Scholar
  180. Khanum, R., Surveswaran, S., Meve, U., Liede-Schumann, S. 2016. Cynanchum (Apocynaceae: Asclepiadoideae): A pantropical Asclepiadoid genus revisited. Taxon 65: 467–486. doi:  https://doi.org/10.12705/653.3
  181. Kiew, R. 1994. The taxonomy and phytochemistry of the Asclepiadaceae in tropical Asia. Malacca: The Herbarium, Department of Biology, Universiti Pertanian Malaysia, 43400 UPM Serdang, Selangor, Malaysia and BOTANY 2000 ASIA.Google Scholar
  182. Kiew, R. 2001. Tylophora. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 564–568. Leiden: Backhuys.Google Scholar
  183. Kingston, D.G.I., Reichstein, T. 1974. Cytotoxic cardenolides from Acokanthera longiflora Staph and related species. J. Pharm. Sci. 63: 462–464.PubMedCrossRefGoogle Scholar
  184. Kirchheimer, F. 1957. Die Laubgehölze der Braunkohlezeit. Halle (Saale): Wilhelm Knapp.Google Scholar
  185. Kisakürek, M.V., Leeuwenberg, A.J.M., Hesse, M. 1983. A chemotaxonomic investigation of the plant families of Apocynaceae, Loganiaceae, and Rubiaceae by their indole alkaloid content. In: Pelletier, W.W. (ed.) Alkaloids: chemical and biological perspectives 1. Wiley: New York, pp. 211–376.Google Scholar
  186. Klackenberg, J. 1992. Taxonomy of Secamone s.lat. (Asclepiadaceae) in the Madagascar region. Opera Botanica a Societate Botanica Lundensis 112: 1–126.Google Scholar
  187. Klackenberg, J. 1995. Taxonomy and phylogeny of the SE Asian genus Genianthus (Asclepiadaceae). Bot. Jahrb. Syst. 117: 401–467.Google Scholar
  188. Klackenberg, J. 1998. Taxonomy and phylogeny of the genus Camptocarpus s.l. (Periplocoideae, Asclepiadaceae). Bot. Jahrb. Syst. 120: 45–85.Google Scholar
  189. Klackenberg, J. 1999. Revision of the Malagasy genera Pentopetia and Ischnolepis (Apocynaceae s.l.). Candollea 54: 257–339.Google Scholar
  190. Klackenberg, J. 2001. Notes on Secamonoideae in Africa. Bull. Mus. Natl. Hist. Nat., B, Adansonia Sér. 3, 23: 317–335.Google Scholar
  191. Klackenberg, J. 2010. New species and combinations of Secamone (Apocynaceae, Secamonoideae) from South East Asia. Blumea 55: 231–241.CrossRefGoogle Scholar
  192. Kleijn, D., Donkelaar, R. van. 2001. Notes on the taxonomy and ecology of the genus Hoya (Asclepiadaceae) in Central Sulawesi. Blumea 46: 457–483.Google Scholar
  193. Koch, I., Bittrich, V., Sumiko Kinoshita, L. 2002. Reproductive biology and functional aspects of the floral morphology of Rauvolfia sellowii Müll. Arg. (Apocynaceae; Rauvolfioideae) – a report of dioecy in Apocynaceae. Bot. Jahrb. Syst. 124: 83–104. doi:  https://doi.org/10.3417/1055-3177(2007)17[462:TNIRAR]2.0.CO;2
  194. Kress, W.J. 1986. The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2–22.Google Scholar
  195. Krings, A., Saville, A.C. 2007. Two new species and three lectotypifications in the Ibatia-Matelea complex (Apocynaceae: Asclepiadoideae) from northern South America. Syst. Bot. 32: 862–871.CrossRefGoogle Scholar
  196. Kugler, H. 1973. Zur Bestäubung von Cynanchum acutum L. durch Faltenwespen (Vespidae). In: Brantjes, N.B.M., Linsgens, H.F. (eds.) Pollination and Dispersal. Nijmwegen: University Nijmwegen, pp. 61–68.Google Scholar
  197. Kumar, P.S., Suresh, E., Kalavathy, S. 2013. Review on a potential herb Calotropis gigantea (L.) R. Br. Sch. Acad. J. Pharm. 2: 135–143.Google Scholar
  198. Kunze, H. 1982. Morphogenese und Synorganisation des Bestäubungsapparates einiger Asclepiadaceen. Beitr. Biol. Pflanzen 56: 133–170.Google Scholar
  199. Kunze, H. 1990. Morphology and evolution of the corona in Asclepiadaceae and related families. Trop. Subtrop. Pflanzenwelt 76: 1–51.Google Scholar
  200. Kunze, H. 1991. Structure and function in asclepiad pollination. Pl. Syst. Evol. 176: 227–253.CrossRefGoogle Scholar
  201. Kunze, H. 1993. Evolution of the translator in Periplocaceae and Asclepiadaceae. Pl. Syst. Evol. 185: 99–122.CrossRefGoogle Scholar
  202. Kunze, H. 1994. Ontogeny of the translator in Asclepiadaceae s.str. Pl. Syst. Evol. 193: 223–242.CrossRefGoogle Scholar
  203. Kunze, H. 1995. Floral morphology of some Gonolobeae (Asclepiadeae). Bot. Jahrb. Syst. 117: 211–238.Google Scholar
  204. Kunze, H. 1996. Morphology of the stamen in the Asclepiadaceae and its systematic relevance. Bot. Jahrb. Syst. 118: 547–579.Google Scholar
  205. Kunze, H. 1997. Corona and nectar system in Asclepiadinae (Asclepiadaceae). Flora 192: 175–183.CrossRefGoogle Scholar
  206. Kunze, H. 2005. Morphology and evolution of the corolla and corona in the Apocynaceae s.l. Bot. Jahrb. Syst. 126: 347–383.CrossRefGoogle Scholar
  207. Kunze, H., Meve, U., Liede, S. 1994. Cibirhiza albersiana, a new species of Asclepiadaceae, and establishment of the tribe Fockeeae. Taxon 43: 367–376.CrossRefGoogle Scholar
  208. Lahaye, R., Civeyrel, L., Speck, T., Rowe, N.P. 2005. Evolution of shrub-like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: Phylogeny, biomechanics, and development. Amer. J. Bot. 92: 1381–1396.CrossRefGoogle Scholar
  209. Lahaye, R., Klackenberg, J., Källersjö, M., Van Campo, E., Civeyrel, L. 2007. Phylogenetic relationships between derived Apocynaceae s.l. and within Secamonoideae based on four chloroplast sequences. Ann. Missouri Bot. Gard. 94: 376–391. doi:  https://doi.org/10.3417/0026-6493(2007)94[376:prbdas]2.0.co;2
  210. Landolt, P.J. 1994. Fruit of Morrenia odorata (Asclepiadaceae) as a host for the papaya fruit fly, Toxotrypana curvicauda (Diptera: Tephritidae). Florida Entomol. 77(2): 287–288.CrossRefGoogle Scholar
  211. Lee, D.U., Kang, S.I., Yoon, S.H., Budesinsky, M., Kasal, A., Mayer, K.K., Wiegrebe, W. 2000. A new steroidal alkaloid from the roots of Cynanchum caudatum. Planta Medica 66: 480–482.PubMedCrossRefGoogle Scholar
  212. Leeuwenberg, A.J.M. 1985. Voacanga Thou. Series of revisions of Apocynaceae, XV. Wageningen Agric. Univ. Pap. 85.3: 1–80.Google Scholar
  213. Leeuwenberg, A.J.M. 1991. A revision of Tabernaemontana, Vol. 1, The Old World species. Kew: Royal Botanic Gardens Press.Google Scholar
  214. Leeuwenberg, A.J.M. 1994a. Taxa of the Apocynaceae above the genus level. Series of revisions of Apocynaceae, XXXVIII. Wageningen Agric. Univ. Pap. 94(3): 45–60.Google Scholar
  215. Leeuwenberg, A.J.M. 1994b. A revision of Tabernaemontana, Vol. 2, The New World species. Kew: Royal Botanic Gardens Press.Google Scholar
  216. Leeuwenberg, A.J.M. 1999. The genus Cerbera L. Series of revisions of Apocynaceae, XLVII. Wageningen Agric. Univ. Pap. 98.3: 1–64.Google Scholar
  217. Leeuwenberg, A.J.M., van Dilst, F.J.H. 2001. Carissa L. Series of revisions of Apocynaceae, XLIX. Wageningen Agric. Univ. Pap. 2001.1: 1–64.Google Scholar
  218. Leighton, M. 1993. Modeling dietary selectivity by Bornean orangutans: Evidence for integration of multiple criteria in fruit selection. Int. J. Primatol. 14: 257–313.CrossRefGoogle Scholar
  219. Leimu, R. 2004. Variation in the mating system of Vincetoxicum hirundinaria (Asclepiadaceae) in peripheral island populations. Ann. Bot. 93: 107–113.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Lens, F., Endress, M.E., Baas, P., Jansen, S., Smets, E. 2008. Wood anatomy of Rauvolfioideae (Apocynaceae): A search for meaningful non-DNA characters at the tribal level. Amer. J. Bot. 95: 1199–1215. doi:  https://doi.org/10.3732/ajb.0800159
  221. Lens, F., Endress, M.E., Baas, P., Jansen, S., Smets, E. 2009. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Amer. J. Bot. 96: 2168–2183. doi:  https://doi.org/10.3732/ajb.0900116
  222. Li, P.T., Gilbert, M.G., Stevens, W.D. 1995a. Asclepiadaceae. In: Wu, Z.Y., Raven, P.H. (eds.) Flora of China, Vol. 16. Beijing, St. Louis: Science Press & Missouri Botanical Garden, pp. 189–270.Google Scholar
  223. Li, P.T., Leeuwenberg, A.J.M., Middleton, D.J. 1995b. Apocynaceae. In: Wu, Z.Y., Raven, P.H. (eds.) Flora of China, Vol. 16. Beijing, St. Louis: Science Press & Missouri Botanical Garden, pp. 143–188.Google Scholar
  224. Liede, S. 1996a. Anther differentiation in the Asclepiadaceae: Form and Function. In: D’Arcy, W.G., Keating, R.C. (eds.) The Anther: Form, Function and Phylogeny. Cambridge: Cambridge University Press, pp. 221–235.Google Scholar
  225. Liede, S. 1996b. CynanchumRhodostegiellaVincetoxicumTylophora: new considerations on an old problem. Taxon 45: 193–211.CrossRefGoogle Scholar
  226. Liede, S. 1997. Subtribes and genera of the tribe Asclepiadeae (Apocynaceae – Asclepiadoideae) – a synopsis. Taxon 46: 233–247.CrossRefGoogle Scholar
  227. Liede, S. 2001. Molecular considerations on the subtribe Astephaninae Endl. ex Meisn. (Apocynaceae – Asclepiadoideae). Ann. Missouri Bot. Gard. 88: 657–668. doi:  https://doi.org/10.2307/3298638
  228. Liede, S., Kunze, H. 1993. A descriptive system for corona analysis in Asclepiadaceae and Periplocaceae. Pl. Syst. Evol. 185: 275–284.CrossRefGoogle Scholar
  229. Liede, S., Meve, U. 1994. A new species of Tylophoropsis (Asclepiadaceae) and notes on the genus. Kew Bulletin 49(4): 749–756.CrossRefGoogle Scholar
  230. Liede, S., Meve, U. 2002 (publ. 2004). Dissolution of Cynanchum sect. Macbridea (Apocynaceae-Asclepiadoideae). Nord. J. Bot. 22: 579–591.Google Scholar
  231. Liede, S., Täuber, A. 2000. Sarcostemma R. Br. (Apocynaceae – Asclepiadoideae) – a controversial generic circumscription reconsidered: Evidence from trnL-F Spacers. Pl. Syst. Evol. 225: 133–140. doi:  https://doi.org/10.1007/bf00985463
  232. Liede, S., Täuber, A. 2002. Circumscription of the genus Cynanchum (Apocynaceae – Asclepiadoideae). Syst. Bot. 27: 789–800. doi:  https://doi.org/10.2307/2419462
  233. Liede, S., Weberling, F. 1995. On the inflorescence structure of Asclepiadaceae. Pl. Syst. Evol. 197: 99–109.CrossRefGoogle Scholar
  234. Liede-Schumann, S., Meve, U. 2015. Synonymy of three South American genera in Apocynaceae, and new combinations in Oxypetalum and Tassadia. Phytotaxa 202: 35–44. doi:  https://doi.org/10.11646/phytotaxa.202.1.4
  235. Liede-Schumann, S., Rapini, A., Goyder, D.J., Chase, M.W. 2005. Phylogenetics of the New World subtribes of Asclepiadeae (Apocynaceae-Asclepiadoideae): Metastelmatinae, Oxypetalinae, and Gonolobinae. Syst. Bot. 30: 184–200. doi:  https://doi.org/10.1600/0363644053661832
  236. Liede-Schumann, S., Kong, H.-H., Meve, U., Thiv, M. 2012. Vincetoxicum and Tylophora (Apocynaceae: Asclepiadoideae: Asclepiadeae)–two sides of the same medal: Independent shifts from tropical to temperate habitats. Taxon 61: 803–825.CrossRefGoogle Scholar
  237. Liede-Schumann, S., Nikolaus, M., Soares e Silva, U.C., Rapini, A., Mangelsdorff, R.D., Meve, U. 2014. Phylogenetics and biogeography of the genus Metastelma (Apocynaceae-Asclepiadoideae-Asclepiadeae: Metastelmatinae). Syst. Bot. 39: 594–612.CrossRefGoogle Scholar
  238. Liede-Schumann, S., Khanum, R., Mumtaz, A.S., Gherghel, I., Pahlevani, A. 2016. Going west – A subtropical lineage (Vincetoxicum, Apocynaceae: Asclepiadoideae) expanding into Europe. Mol. Phyl. Evol. 94: 436–446.CrossRefGoogle Scholar
  239. Lienau, K., Straka, H., Friedrich, B. 1986. Palynologia Madagassica et Mascarenica, Fam. 167–181. Trop. Subtrop. Pflanzenwelt 55: 1–158.Google Scholar
  240. Lin, S., Bernardello, G. 1999. Flower structure and reproductive biology in Aspidosperma quebracho-blanco (Apocynaceae), a tree pollinated by deceit. Int. J. Pl. Sci. 160: 869–878.CrossRefGoogle Scholar
  241. Linhart, Y.B., Feinsinger, P. 1980. Plant-hummingbird interactions: Effects of island size and degree of specialization on pollination. J. Ecol. 68: 745–760.CrossRefGoogle Scholar
  242. Lipow, S.R., Wyatt, R. 1998. Reproductive biology and breeding system of Gonolobus suberosus (Asclepiadaceae). J. Torrey Bot. Soc. 125: 183–193.CrossRefGoogle Scholar
  243. Lipow, S.R., Wyatt, R. 1999. Floral morphology and late-acting self-incompatibility in Apocynum cannabinum (Apocynaceae). Pl. Syst. Evol. 219: 99–109.CrossRefGoogle Scholar
  244. Livshultz, T. 2010. The phylogenetic position of milkweeds (Apocynaceae subfamilies Secamonoideae and Asclepiadoideae): Evidence from the nucleus and chloroplast. Taxon 59: 1016–1030.CrossRefGoogle Scholar
  245. Livshultz, T., Middleton, D.J., Endress, M.E., Williams, J.K. 2007. Phylogeny of Apocynoideae and the APSA clade (Apocynaceae). Ann. Missouri Bot. Gard. 94: 324–359. doi:  https://doi.org/10.3417/0026-6493(2007)94[324:poaata]2.0.co;2
  246. Lodder, S., Rutten, E.M.J., Van der Ham, R.W.J.M. 2007. Pollen morphology. In: Middleton, D.J. 2007. Apocynaceae (subfamilies Rauvolfioideae and Apocynoideae), Vol. 18. In: Nooteboom, H.P. (ed.) Flora Malesiana, Series I – Seed Plants. Leiden: Foundation Flora Malesiana.Google Scholar
  247. Lopes, A.V., Machado, I.C. 1999. Pollination and reproductive biology of Rauvolfia grandiflora (Apocynaceae): Secondary pollen presentation, herkogamy and self-incompatibility. Pl. Biol. 1: 547–553.CrossRefGoogle Scholar
  248. Lorence, D.H., Butaud, J.-F. 2011. A reassessment of Marquesan Ochrosia and Rauvolfia (Apocynaceae) with two new combinations. PhytoKeys 4: 95–107. doi:  https://doi.org/10.3897/phytokeys.4.1599
  249. Lorence, D.H., Wagner, W.L. 1997. A revision of Lepinia (Apocynaceae), with description of a new species from the Marquesas Islands. Allertonia 7: 254–266.Google Scholar
  250. Ludwig, F. 1880. Über die Bestäubungsvorrichtungen und die Fliegenfalle des Hundskohles, Apocynum androsaemifolium L. Kosmos 8: 182–185.Google Scholar
  251. Lumer, C., Yost, S.E. 1995. The reproductive biology of Vincetoxicum nigrum (L.) Moench (Asclepiadaceae), a Mediterranean weed in New York State. Bull. Torrey Bot. Club 122: 12–23.CrossRefGoogle Scholar
  252. Machado, C.G. 2009. Beija-flores (Aves: Trochilidae) e seus recursos florais em uma área de caatinga da Chapada Diamantina, Bahia, Brasil. Zoologia 26: 255–265.CrossRefGoogle Scholar
  253. Maheswari Devi, H. 1964. Embryological studies in Asclepiadaceae. Proc. Indian Acad. Sci., Pl. Sci. 60B: 52–65.Google Scholar
  254. Mahlberg, P. 1980. The latex cells of asclepiads. Asklepios 23: 30–32.Google Scholar
  255. Markgraf, F. 1971. Florae Malesianae Praecursores LI. Apocynaceae I. 1. Carissa, 2. Catharanthus, 3. Melodinus, 4. Leuconotis, 5. Chilocarpus. Blumea 19: 156–165.Google Scholar
  256. Markgraf, F. 1976. Apocynaceae. In: Leroy, J.-F. (ed.) Flore de Madagascar et des Comores. Fam. 169. Paris: Muséum National d’Histoire Naturelle, Paris.Google Scholar
  257. Martínez-Millán, M. 2010. Fossil Record and Age of the Asteridae. Bot. Rev. 76: 83–135.CrossRefGoogle Scholar
  258. Masinde, P.S., Meve, U. 2002. Ceropegia zambesiaca (Apocynaceae: Asclepiadoideae-Ceropegieae), a new species from Zambia. Kew Bull. 57: 205–209.CrossRefGoogle Scholar
  259. McDiarmid, R.W. 1977. Dispersal of Stemmadenia donnell-smithii (Apocynaceae) by birds. Biotropica 9: 9–25.CrossRefGoogle Scholar
  260. McFadyen, R.E., Harvey G.J. 1990. Distribution and control of rubber vine, Cryptostegia grandiflora, a major weed in northern Queensland. Pl. Protection Quarterly 5: 152–155.Google Scholar
  261. McNeill, J., Barrie, F.R., Buck, W.R., Demoulin, V., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Marhold, K., Prado, J., Prud’homme van Reine, W.F., Smith, G.F., Wiersema, J.H., Turland, N.J. (eds.) 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code): Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnun Vegetabile 154, Königstein: Koeltz Scientific Books. http://www.iapt-taxon.org/nomen/main.php
  262. Metcalfe, C.R., Chalk, L. 1972. Anatomy of the Dicotyledons, Vol. 2 [Apocynaceae, Asclepiadaceae]. Oxford: University Press, pp. 905–925.Google Scholar
  263. Metcalfe, C.R., Chalk, L. 1979. Anatomy of the Dicotyledons, 2nd ed, Vol. 1. Oxford: Clarendon Press.Google Scholar
  264. Metzner, R. 1998. Hallucinogenic drugs and plants in psychotherapy and shamanism. J. Psychoactive Drugs 30: 333–341. doi:  https://doi.org/10.1080/02791072.1998.10399709
  265. Meve, U. 1994. The genus Piaranthus R. Br. (Asclepiadaceae). Bradleya 12: 57–102.CrossRefGoogle Scholar
  266. Meve, U. 1995. A review of phytophagous insects on Stapeliads (Asclepiadaceae). Cimbebasia 14: 103–106.Google Scholar
  267. Meve, U. 1997. The genus Duvalia (Stapelieae): stem-succulents between the Cape and Arabia. Pl. Syst. Evol. Suppl. 10. Wien: Springer, 132 pp.Google Scholar
  268. Meve, U., Liede, S. 1994. Floral biology and pollination in Stapeliads – new results and a literature review. Pl. Syst. Evol. 192: 99–116.CrossRefGoogle Scholar
  269. Meve, U., Liede, S. 2002a. A molecular phylogeny and generic rearrangement of the stapelioid Ceropegieae (Apocynaceae-Asclepiadoideae). Pl. Syst. Evol. 234: 171–209.CrossRefGoogle Scholar
  270. Meve, U., Liede, S. 2002b. Floristic exchange between mainland Africa and Madagascar: A case study of Apocynaceae-Asclepiadoideae. J. Biogeogr. 29: 865–873.CrossRefGoogle Scholar
  271. Meve, U., Liede, S. 2004a. Generic delimitations in tuberous Periplocoideae (Apocynaceae) from Africa and Madagascar. Ann. Bot. 93: 407–414. doi:  https://doi.org/10.1093/aob/mch057
  272. Meve, U., Liede, S. 2004b. Subtribal division of Ceropegieae (Apocynaceae-Asclepiadoideae). Taxon 53: 61–72. doi:  https://doi.org/10.2307/4135489
  273. Meve, U., Liede-Schumann, S. 2007. Ceropegia (Apocynaceae, Ceropegieae, Stapeliinae): Paraphyletic but still taxonomically sound. Ann. Missouri Bot. Gard. 94: 392–406.CrossRefGoogle Scholar
  274. Meve, U., Liede-Schumann, S. 2015. Taxonomy of the Andean genus Pentacyphus (Apocynaceae: Asclepiadeae–Pentacyphinae). Pl. Syst. Evol. 301: 997–1004.CrossRefGoogle Scholar
  275. Meve, U., Liede-Schumann, S. 2017. Was ist Cynanchum L. (Apocynaceae-Asclepiadoideae)? Schritt für Schritt zu einem erweiterten Gattungskonzept. Avonia 35: 77–85.Google Scholar
  276. Meve, U., Wolf, F. 2001. Echidnopsis bentii N.E. Brown (Ceropegieae) auf Sokotra gefunden. Kakt. and. Sukk. 52(5): 113–118.Google Scholar
  277. Meve, U., Jahnke, G., Liede, S., Albers, F. 2004. Isolation mechanisms in the Stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). Schumannia 4 / Biodivers. Ecol. 2: 107–126.Google Scholar
  278. Meve, U., Heiduk, A., Liede-Schumann, S. 2017. Origin and early evolution of Ceropegieae (Apocynaceae-Asclepiadoideae). Syst. Biodivers. 15: 143–155.CrossRefGoogle Scholar
  279. Meyer, J.-Y. 1996. Espèces et Espaces Menacés de la Sociéte et des Marquises. Contribution à l’Environnement. Délégation à la Recherche, Papeete.Google Scholar
  280. Meyer, J.-Y., Butaud, J.-F. 2009. The impacts of rats on the endangered native flora of French Polynesia (Pacific Islands): Drivers of plant extinction or coup de grâce species? Biol. Invasions 11: 1569–1585.CrossRefGoogle Scholar
  281. Meyer, J.-Y., Picot, F. 2001. Achatines attack! The impact of giant African land snails on rare endemic plants in La Réunion Island (Mascarene Islands, Indian Ocean). Aliens. (Bull. Invasive Species Spec. Group IUCN Spec. Surv. Comm.) 14: 13–14.Google Scholar
  282. Meyer, B.N., McLaughlin, J.L., Keller, W.J. 1981. Candicine from Stapelia gigantea. Pl. Med. 43: 304–306.CrossRefGoogle Scholar
  283. Middleton, D.J. 2000. Revision of Alyxia, Part 1: Asia and Malesia. Blumea 45: 1–146.Google Scholar
  284. Middleton, D.J. 2002. Revision of Alyxia (Apocynaceae). Part 2: Australia and Pacific Islands. Blumea 47: 1–93.Google Scholar
  285. Middleton, D.J. 2007. Apocynaceae (subfamilies Rauvolfioideae and Apocynoideae), Vol. 18. In: Nooteboom, H.P. (ed.) Flora Malesiana, Series I – Seed Plants. Leiden: Foundation Flora Malesiana.Google Scholar
  286. Middleton, D.J. 2010. Three new species of Wrightia (Apocynaceae: Apocynoideae) from Thailand. Gard. Bull. Singapore 61: 129–138.Google Scholar
  287. Middleton, D.J. 2014. Apocynaceae, subfamilies Rauvolfioideae and Apocynoideae. Flora of Cambodia, Laos and Vietnam 33. Paris and Edinburgh: Muséum National d’Histoire Naturelle, Royal Botanic Garden Edinburgh, pp 1–276.Google Scholar
  288. Middleton, D.J., Livshultz, T. 2012. Streptoechites gen. nov., a new genus of Asian Apocynaceae. Adansonia Sér. 3, 34: 365–375. doi:  https://doi.org/10.5252/a2012n2a10
  289. Middleton, D.J., Lindsay, S., Suddee, S. 2006 (‘2005’). A new species of Kamettia (Apocynaceae: Rauvolfioideae), a genus new to Thailand. Thai Forest Bull. 33: 75–80.Google Scholar
  290. Morales, J.F. 1998. A synopsis of the genus Mandevilla (Apocynaceae) in Mexico and Central America. Brittonia 50: 214–232.CrossRefGoogle Scholar
  291. Morales, J.F., Zamora, N.A. 2017. A synopsis of Aspidosperma (Apocynaceae) in Mexico and Central America with a taxonomic clarification of Aspidosperma cruentum and a new cryptic species. Phytoneuron 68: 1–13.Google Scholar
  292. Morales, J.F., Endress M.E., Liede-Schumann, S. 2017a. Sex, drugs and pupusas: Disentangling relationships in Echiteae (Apocynaceae). Taxon 66: 623–644.CrossRefGoogle Scholar
  293. Morales, J.F., Endress, M.E., Liede-Schumann, S. 2017b. Systematics of Prestonia (Apocynaceae: Apocynoids: Echiteae) eighty years after Woodson. Ann. Missouri Bot. Gard. 102: 520–541.CrossRefGoogle Scholar
  294. Moré, M., Sérsic, A.N., Cocucci, A.A. 2007. Restriction of pollinator assemblage through flower length and width in three long-tongued hawkmoth-pollinated species of Mandevilla (Apocynaceae, Apocynoideae). Ann. Missouri Bot. Gard. 94: 485–504.CrossRefGoogle Scholar
  295. Morillo, G. 2012. Aportes al conocimiento de las Gonolobinae (Apocynaceae- Asclepiadoideae). Pittieria 36: 13–57.Google Scholar
  296. Morillo, G. 2013. Aportes al conocimiento de las Gonolobinae II (Apocynaceae, Asclepiadoideae). Pittieria 37: 101–140.Google Scholar
  297. Morillo, G. 2015. Aportes al conocimiento de las Gonolobinae III (Apocynaceae, Asclepiadoideae). Pittieria 39: 191–258.Google Scholar
  298. Morokawa, R., Mayer, J.L.S., Simões, A.O., Kinoshita, L.S. 2015. Floral development of Condylocarpon isthmicum (Apocynaceae). Botany 93: 679–781.  https://doi.org/10.1139/cjb-2015-0081 CrossRefGoogle Scholar
  299. Morse, D.H. 1985. Milkweeds and their visitors. Sci. Amer. 253: 112–119.CrossRefGoogle Scholar
  300. Morton, J.F., Alvarez, E., Quinonez, C. 1990. Loroco, Fernaldia pandurata (Apocynaceae) – a popular edible flower of Central America. Econ. Bot. 44: 301–310.CrossRefGoogle Scholar
  301. Moura, T.N.D., Webber, A.C., Torres, L.N.M. 2011. Floral biology and a pollinator effectiveness test of the diurnal floral visitors of Tabernaemontana undulata Vahl. (Apocynaceae) in the understory of Amazon Rainforest, Brazil. Acta Bot. Bras. 25: 380–386.CrossRefGoogle Scholar
  302. Mu, Q.Z., Lu, R.J., Zhou, Q.L. 1986. Two new antiepilepsy compounds – otophylloside A and otophylloside B. Sci. Sin. (B) 24: 295–301.Google Scholar
  303. Muller, J. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous-Eocene) in Sarawak, Malaysia. Micropaleontology 14: 1–37.CrossRefGoogle Scholar
  304. Muller, J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. 47: 1–146.CrossRefGoogle Scholar
  305. Naumova, T.N. 1992. Apomixis in Angiosperms. Boca Raton: CRC Press.Google Scholar
  306. Nel, M. 1995. Rare and interesting plants of the Namib Desert. Part 2. Three desert plants. Veld Fl. 81: 14–16.Google Scholar
  307. Neuwinger, H.D. 1994a. Asclepiadaceae. In: Afrikanische Arzneipflanzen und Jagdgifte, Vol. 59. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp. 208–232.Google Scholar
  308. Neuwinger, H.D. 1994b. Fish poisoning plants in Africa. Bot. Acta 107: 263–270.CrossRefGoogle Scholar
  309. Nevo, O., Garri, R.O., Hernandez Salazar, L., Schulz, S., Heymann, E.W., Ayasse, M., Laska, M. 2015. Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Sci. Rep. Oct. 2015. doi: http://dx.doi.org/10.038/srep14895Google Scholar
  310. Nicholas, A., Baijnath, H. 1994. A consensus classification of the order Gentianales with additional details on the suborder Apocynineae. Bot. Rev. 60: 440–482.CrossRefGoogle Scholar
  311. Nilsson, S. 1986. The significance of pollen morphology in the Apocynaceae. In: Blackmore, S., Ferguson, I.K. (eds.) Pollen and Spores: Form and Function. J. Linn. Soc. Symp. Ser. 12. London: Academic Press, pp. 359–374.Google Scholar
  312. Nilsson, S. 1990. Taxonomic and evolutionary significance of pollen morphology in the Apocynaceae. Pl. Syst. Evol., Suppl. 5: 91–102.Google Scholar
  313. Nilsson, S., Endress, M.E., Grafström, E. 1993. On the relationship of the Apocynaceae and Periplocaceae. Grana 1993, Suppl. 2: 3–20.Google Scholar
  314. Nishino, E. 1982. Corolla tube formation in six species of Apocynaceae. Bot. Mag. Tokyo 95: 1–17.CrossRefGoogle Scholar
  315. Nishino, E. 1983. Corolla tube formation in the Tubiflorae and Gentianales. Bot. Mag. Tokyo 96: 223–243.CrossRefGoogle Scholar
  316. Ollerton, J., Liede, S. 1997. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol. J. Linn. Soc. 62: 593–610.CrossRefGoogle Scholar
  317. Ollerton, J., Johnson, S.D., Cranmer, L., Kellie, S. 2003. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann. Bot. 92: 807–834.PubMedPubMedCentralCrossRefGoogle Scholar
  318. Omino, E. 1996. A monograph of the subtribe Pleiocarpinae (Apocynaceae-Plumerioideae-Carisseae). Series of revisions of Apocynaceae, XLI. Wageningen Agric. Univ. Pap. 96-1: 81–178.Google Scholar
  319. Omlor, R. 1998. Generische Revision der Marsdenieae (Asclepiadaceae). Kaiserslautern: Shaker Verlag.Google Scholar
  320. Pant, D.D., Nautiyal, D.D., Chaturvedi, S.K. 1982. Pollination ecology of some Indian asclepiads. Phytomorphology 32: 302–313.Google Scholar
  321. Pathania, S., Randhawa, V., Bagler, G. 2013. Prospecting for novel plant-derived molecules of Rauvolfia serpentina as inhibitors of aldose reductase, a potent drug target for diabetes and its complications. PloS ONE 8(4): e61327. doi:  https://doi.org/10.1371/journal.pone.0061327
  322. Pathania, S., Ramakrishnan, S.M., Randhawa, V., Bagler, G. 2015. SerpentinaDB: A database of plant-derived molecules of Rauvolfia sepentina. BMC Complement. Alt. Med. 15: 262. doi:  https://doi.org/10.1186/s12906-015-0683-7
  323. Paulo, A., Jimeno, M.L., Gomes, E.T., Houghton, P.J. 2000. Steroidal alkaloids from Cryptolepis obtusa. Phytochemistry 53: 417–422.PubMedCrossRefGoogle Scholar
  324. Pauw, A. 1998. Pollen transfer on birds’ tongues. Nature 394: 731–732.CrossRefGoogle Scholar
  325. Peeters, C., Wiwatwitaya, D. 2014. Philidris ants living inside Dischidia epiphytes from Thailand. Asian Myrmecology 6: 49–61.Google Scholar
  326. Pereira, A.S.S., Simões, A.O., Santos, J.U.M. 2016. Taxonomy of Aspidosperma Mart. (Apocynaceae, Rauvolfioideae) in the state of Pará, northern Brazil. Biota Neotropica 16(2): e20150080. doi:  https://doi.org/10.1590/1676-011öBN-2015-0080
  327. Pereira, A.S.S., Castello, A.C.D., Scudeler, A.L., Simões, A.O., Koch, I. 2017. Aspidosperma brasiliense (Apocynaceae), a new and widely distributed species. Phytotaxa 326: 235–244.CrossRefGoogle Scholar
  328. Periasamy, K. 1963. Studies on seeds with ruminate endosperm. III. Development of rumination in certain members of the Apocynaceae. Proc. Indian Acad. Sci. 58, sect. B, 1: 325–332, t. 29, 30.Google Scholar
  329. Perry, L.M. 1980. Medicinal Plants of East and Southeast Asia: attributed properties and uses. Cambridge, MA: MIT Press.Google Scholar
  330. Persoon, J., Dilst, F.J.H., Kuijpers, R.P., Leeuwenberg, A.J.M., Vonk, G.J.A. 1992. The African species of Landolphia. Series of revisions of Apocynaceae, XXXIV. Wageningen Agric. Univ. Pap. 92.2: 1–232.Google Scholar
  331. Pichon, M. 1948a. Classification des Apocynacées. I. Carissées et Ambelaniées. Mém. Mus. Natl. Hist. Nat., Sér. B, Bot. 24: 111–181.Google Scholar
  332. Pichon, M. 1948b. Classification des Apocynacées. V. Cerbéroïdées. Not. Syst. Paris 13: 212–229.Google Scholar
  333. Pichon, M. 1948c. Classification des Apocynacées. XIX. Le rétinacle de Echitoïdées. Bull. Soc. Bot. France 95: 211–216.CrossRefGoogle Scholar
  334. Pichon, M. 1949. Classification des Apocynacées. IX. Rauvolfiées, Alstoniées, Allamandées et Tabernaémontanoidées. Mém. Mus. Natl. Hist. Nat. 27: 153–251.Google Scholar
  335. Pichon, M. 1950a. Classification des Apocynacées XXV, Echitoïdées. Mém. Mus. Natl. Hist. Nat., Sér. B, Bot.1: 1–142.Google Scholar
  336. Pichon, M. 1950b. Classification des Apocynacées: XXVIII, Supplément aux Plumerioïdées, Mém. Mus. Natl. Hist. Nat., Sér. B, Bot. 1: 145–166.Google Scholar
  337. Pienaar, M. 2013. Phylogeny of the genus Raphionacme (Apocynaceae). M.Sc. Thesis, Dept. Plant Sciences, Univ. Free State, Bloemfontein, Bloemfontein, South Africa.Google Scholar
  338. Plumel, M.M. 1991. Le genre Himatanthus (Apocynaceae). Révision taxonomique. Bradea 5 (suppl.): 1–118.Google Scholar
  339. Poinar, G.O. 2017. Ancient termite pollinator of milkweed flowers in Dominican amber. Amer. Entomol. 63: 52–56.CrossRefGoogle Scholar
  340. Potgieter, K., Albert, A.A. 2001. Phylogenetic relationships within Apocynaceae s. l. based on trnL intron and trnL-F spacer sequences and propagule characters. Ann. Missouri Bot. Gard. 88: 523–549. doi:  https://doi.org/10.2307/3298632
  341. Pynee, K., Dubuisson, J.-Y., Hennequin, S. 2013. Flora diversity of Mount Bar Le Duc Volcanic Crater (Ripailles Hill), Nouvelle Découverte, Mauritius. Cahiers Sci. Ocean Ind. Occid. 4: 15–20.Google Scholar
  342. Queiroz, J.A., 2009. Esfingofilia e polinização por engano em Aspidosperma pyrifolium Mart., uma Apocynaceae arbórea endêmica de caatinga. Ph.D. Thesis, Universidade Federal de Pernambuco, Recife.Google Scholar
  343. Rahayu, S.S.B. 2001. Allamanda. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 49–52. Leiden: Backhuys.Google Scholar
  344. Ramakrishna, T.M., Arekal, G.D. 1979. Pollination biology of Calotropus gigantea (L.). R. Br. Curr. Sci. 48: 212–213.Google Scholar
  345. Rapini, A., Chase, M.W., Goyder, D.J., Griffiths, J. 2003. Asclepiadeae classification: evaluating the phylogenetic relationships of New World Asclepiadoideae (Apocynaceae). Taxon 52: 33–50. doi:  https://doi.org/10.2307/3647300
  346. Rapini, A., van den Berg, C., Liede-Schumann, L. 2007. Diversification of Asclepiadoideae (Apocynaceae) in the New World. Ann. Missouri Bot. Gard. 94: 407–422.  https://doi.org/10.3417/0026-6493(2007)94[407:DOAAIT]2.0.CO;2 CrossRefGoogle Scholar
  347. Rapini, A., Fontella Pereira, J., Goyder, D.J. 2011. Towards a stable generic circumscription in Oxypetalinae (Apocynaceae). Phytotaxa 26: 9–16.CrossRefGoogle Scholar
  348. Razafindratsima, O.H., Jones, T.A., Dunham, A.E. 2014. Patterns of movement and seed dispersal by three lemur species. Amer. J. Primatology 76: 84–96.CrossRefGoogle Scholar
  349. Reid, E.M., Chandler, M.E.J. 1926. The Bembridge Flora (Apocynaceae, Asclepiadaceae). London: Order of the Trustees.Google Scholar
  350. Ribeiro, P.L., Rapini, A., Damascena, L.S., van den Berg, C. 2014. Plant diversification in the Espinhaço Range: Insights from the biogeography of Minaria (Apocynaceae). Taxon 63: 1253–1264.CrossRefGoogle Scholar
  351. Rintz, R.E. 1980. A revision of the genus Sarcolobus (Asclepiadaceae). Blumea 26: 65–79.Google Scholar
  352. Rodda, M. 2015. Two new species of Hoya R.Br. (Apocynaceae, Asclepiadoideae) from Borneo. PhytoKeys 53: 83–93.CrossRefGoogle Scholar
  353. Rodda, M., Omlor, R. 2013. The taxonomy of Oreosparte (Apocynaceae: Asclepiadoideae). Webbia 68: 91–95.CrossRefGoogle Scholar
  354. Rodríguez-Estrella, R., Navarro, J.J.P., Granados, B., Rivera, L. 2010. The distribution of an invasive plant in a fragile ecosystem: The rubber vine (Cryptostegia grandiflora) in oases of the Baja California peninsula. Biol. Invas. 12: 3389–3393.CrossRefGoogle Scholar
  355. Rosatti, T.J. 1989. The genera of suborder Apocynineae (Apocynaceae and Asclepiadaceae) – Asclepiadaceae. J. Arnold Arb. 70: 443–514.CrossRefGoogle Scholar
  356. Rudjiman. 1982. A revision of Vallaris Burm. f. (Apocyneae). Series of revisions of Apocynaceae, IX. Meded. Landbouwhogeschool Wageningen 82-11: 1–17.Google Scholar
  357. Rudjiman. 2001. Kibatalia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 322–324. Leiden: Backhuys.Google Scholar
  358. Sabir, J.S.M., Jansen, R.K., Arasappan, D., Calderon, V., Noutahi, E., Zheng, C., Park, S., Sabir, M.J., Baeshen, M.N. Hajrah, N.H., Khiyami, M.A., Baeshen, N.A., Obaid, A.Y., Al-Malki, A.L., Sankoff, D., El-Mabrouk, N., Ruhlman, T.A. 2016. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae. Sci. Rep. 6, 33782. doi:  https://doi.org/10.1038/srep33782
  359. Safwat, F.M. 1962. The floral morphology of Secamone and the evolution of the pollinating apparatus in Asclepiadaceae. Ann. Missouri Bot. Gard. 49: 95–129.CrossRefGoogle Scholar
  360. Sage, T.L., Williams, E.G. 1993. Self-incompatibility in Asclepias. Pl. Cell Incompatibility Newsl. 23: 55–57.Google Scholar
  361. Sage, T.L., Williams, E.G. 1995. Structure, ultrastructure, and histochemistry of the pollen tube pathway in the milkweed Asclepias exaltata. L. Sex. Pl. Repro. 8: 257–265.Google Scholar
  362. Sage, T.L., Broyles, S.G., Wyatt, R. 1990. The relationship between the five stigmatic chambers and two ovaries of milkweed flowers: a three-dimensional assessment. Israel J. Bot. 39: 187–196.Google Scholar
  363. Sangat-Roemantyo, H.M., Middleton, D.J. 2001. Alyxia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 69–72. Leiden: Backhuys.Google Scholar
  364. Schick, B. 1980. Untersuchungen über die Biotechnik der Apocynaceenblüte.I. Morphlogie und Funktion des Narbenkopfes. Flora 170: 394–432.CrossRefGoogle Scholar
  365. Schick, B. 1982a. Untersuchungen über die Biotechnik der Apocynaceenblüte. II. Bau und Funktion des Bestäubungsapparates. Flora 172: 347–371.Google Scholar
  366. Schick, B. 1982b. Zur Morphologie, Entwicklung, Feinstruktur und Funktion des Translators von Periploca L. (Asclepiadaceae). Trop. Subtrop. Pflanzenwelt 40: 513–553.Google Scholar
  367. Schill, R., Jäkel, U. 1978. Beitrag zur Kenntnis der Asclepiadaceen-Pollinarien. Trop. Subtrop. Pflanzenwelt 22: 53–170.Google Scholar
  368. Schlechter, F.R.R. 1905. Periplocaceae and Asclepiadaceae. In: Schumann, K., Lauterbach, K. (eds.) Nachträge zur Flora des Deutschen Südseegebiets. Leipzig: Borntraeger, pp. 351–369.Google Scholar
  369. Schlindwein, C., Darrault, R.O., Grisi, T., 2004. Reproductive strategies in two sphingophilous apocynaceous trees attracting pollinators through nectar or deceit. In: Breckle, S.-W., Schweizer, B., Fangmeier, A. (eds.) Proceedings of the 2nd Symposium of the AFW Schimper-Foundation. Stuttgart: Verlag Günter Heimbach, pp. 215–227.Google Scholar
  370. Schnepf, E., Witzig, F., Schill, R. 1979. Über Bildung und Feinstruktur des Translators der Pollinarien von Asclepias curassavica und Gomphocarpus fruticosus (Asclepiadaceae). Trop. Subtrop. Pflanzenwelt 25: 1–39.Google Scholar
  371. Schroeder, C.A. 1951. Heterostyly and sterility in Carissa grandiflora. Proc. Amer. Soc. Hort. Sci. 57: 419–422.Google Scholar
  372. Schultes, R.E. 1979. De plantis toxicariis e mundo novo tropicale commentationes XIX. Biodynamic apocynaceous plants of the northwestern Amazon. J. Ethnopharmacol. 1: 165–192.PubMedCrossRefGoogle Scholar
  373. Schultes, R.E., Raffauf, R.F. 1990. Historical, ethno-and economic botany series. In: Dudley, T.R. (ed.) The Healing Forest, Vol. 2. Portland: Dioscorides Press, pp. 98–99.Google Scholar
  374. Schumann, K. 1895. Apocynaceae and Asclepiadaceae. In: Engler, A., Prantl, K. (eds.) Die Nat. Pflanzenfam. 4(2). Leipzig: W. Engelmann, pp. 189–305. doi:  https://doi.org/10.5962/bhl.title.4635
  375. Sennblad, B., Bremer, B. 1996. The familial and subfamilial relationships of Apocynaceae and Asclepiadaceae evaluated with rbcL data. Pl. Syst. Evol. 202: 153–175. doi:  https://doi.org/10.1007/BF00983380
  376. Sennblad, B., Bremer, B. 2000. Is there a justification for differential a priori weighting in coding sequences? A case study from rbcL and Apocynaceae s. l. Syst. Biol. 49: 101–113. doi:  https://doi.org/10.1080/10635150050207410
  377. Sennblad, B., Endress, M.E., Bremer, B. 1998. Morphology and molecular data in phylogenetic fraternity: The tribe Wrightieae (Apocynaceae) revisited. Amer. J. Bot. 85: 1143–1158. doi:  https://doi.org/10.2307/2446347
  378. Sharaf, M.H.M., Schiff, P.L., Tackie, A.N., Phoebe, C.H., Martin, G.E. 1996. Two new indoloquinoline alkaloids from Cryptolepis sanguinolenta: cryptosanguinolentine and cryptotackieine. J. Heterocyclic Chem. 33: 239–243.CrossRefGoogle Scholar
  379. Sharma, S., Shahzad, A. 2014. An overview on Decalepis: A genus of woody medicinal climbers. J. Plant Sci. Res. 1: 104.Google Scholar
  380. Sheeley, S.E., Raynal, D.J. 1996. The distribution and status of species of Vincetoxicum in eastern North America. Bull. Torrey Bot. Club 123: 148–156.CrossRefGoogle Scholar
  381. Shuttleworth, A., Johnson, S.D. 2006. Specialized pollination by large spider-hunting wasps and self-incompatibility in the African milkweed Pachycarpus asperifolius. Int. J. Pl. Sci. 167: 1177–1186.CrossRefGoogle Scholar
  382. Shuttleworth, A., Johnson, S.D. 2008. Bimodal pollination by wasps and beetles in the African milkweed Xysmalobium undulatum. Biotropica 40: 568–574.CrossRefGoogle Scholar
  383. Shuttleworth, A., Johnson, S.D. 2009. The importance of scent and nectar filters in a specialized wasp-pollination system. Funct. Ecol. 23: 931–940.CrossRefGoogle Scholar
  384. Shuttleworth, A., Johnson, S.D. 2012. The Hemipepsis wasp-pollination system in South Africa: a comparative analysis of trait convergence in a highly specialized plant guild. Bot. J. Linn. Soc. 168: 278–299.CrossRefGoogle Scholar
  385. Sidiyasa, K. 1998. Taxonomy, phylogeny and wood anatomy of Alstonia (Apocynaceae). Blumea Suppl. 11: 1–230.Google Scholar
  386. Sidney, N.C. 2012. A taxonomic revision of Finlaysonia and Streptocaulon (Periplocoideae; Apocynaceae). M.Sc. Thesis, Dept. Plant Sciences, Univ. Free State Bloemfontein, Bloemfontein, South Africa.Google Scholar
  387. Silva, U.C.S., Rapini, A., Liede-Schumann, S., Ribeiro, P.L., Van den Berg, C. 2012. Taxonomic considerations on Metastelmatinae (Apocynaceae) based on plastid and nuclear DNA. Syst. Bot. 37: 795–806.CrossRefGoogle Scholar
  388. Silva, U.C.S., Santos, R.G.P., Rapini, A., Fontella Pereira, J., Liede-Schumann, S. 2014. Monsanima tinguaensis (Apocynaceae), an enigmatic new species from Atlantic rainforest. Phytotaxa 173: 11. doi: http://dx.doi.org./10.1600/036364412X648733Google Scholar
  389. Simões, A.O., Endress, M.E., van der Niet, T., Conti, E., Kinoshita, L.S. 2004. Tribal and intergeneric relationships of Mesechiteae (Apocynoideae, Apocynaceae): evidence from three noncoding plastid DNA regions and morphology. Amer. J. Bot. 91: 1409–1418. doi:  https://doi.org/10.3732/ajb.91.9.1409
  390. Simões, A.O., Endress, M.E., van der Niet, T., Kinoshita, L.S., Conti, E. 2006. Is Mandevilla (Apocynaceae, Mesechiteae) monophyletic? Evidence from five plastid DNA loci and morphology. Ann. Missouri Bot. Gard. 93: 565–591. doi:  https://doi.org/10.3417/0026-6493(2006)93[565:IMAMME]2.0.CO;2
  391. Simões, A.O., Livshultz, T., Conti, E., Endress, M.E. 2007. Phylogeny and systematics of the Rauvolfioideae (Apocynaceae) based on molecular and morphological evidence. Ann. Missouri Bot. Gard. 94: 268–297.  https://doi.org/10.3417/0026-6493(2007)94[268:PASOTR]2.0.CO;2 CrossRefGoogle Scholar
  392. Simões, A.O., Endress, M.E., Conti, E. 2010. Systematics and character evolution of Tabernaemontaneae (Apocynaceae, Rauvolfioideae) based on molecular and morphological evidence. Taxon 59: 772–790.CrossRefGoogle Scholar
  393. Simões, A.O., Kinoshita, L.S., Koch, I., Silva, M.J., Endress, M.E. 2016. Systematics and character evolution of Vinceae (Apocynaceae). Taxon 65: 99–122. doi: http://dx.doi.org/0000-0003-3256-5922
  394. Smith, A.R. 1971. Curroria macrophylla A.R. Smith. Hook. Icon. Pl. 37: pl. 3685. In: Taylor, G. (ed.) London: Bentham-Moxon Trusties.Google Scholar
  395. Solbreck, S. 2000. Ecology and biology of Euphranta connexa (Fabr.) (Diptera: Tephritidae) – a seed predator on Vincetoxicum hirundinaria Med. (Asclepiadaceae). Entomol. Tidskr. 121: 23–30.Google Scholar
  396. Solereder, H. 1899. Asclepiadaceae. In: Systematische Anatomie der Dicotyledonen. Stuttgart: Enke, pp. 603–609.Google Scholar
  397. Spellman, D.L., Gunn, C.R. 1976. Morrenia odorata and Araujia sericifera (Asclepiadaceae): weeds in Citrus groves. Castanea 41: 139–148.Google Scholar
  398. Straub, S.C.K., Moore, M.J., Soltis, P.S., Soltis, D.E., Liston, A., Livshultz, T. 2014. Phylogenetic signal detection from an ancient rapid radiation: Effects of noise reduction, long-branch attraction, and model selection in crown clade Apocynaceae. Mol. Phyl. Evol. 80: 169–185. doi:  https://doi.org/10.1016/j.ympev.2014.07.020
  399. Struwe, L., Albert, V.A., Bremer, B. 1994. Cladistics and family level classification of the Gentianales. Cladistics 10: 175–206.CrossRefGoogle Scholar
  400. Sugiura, S., Yamazaki, K. 2005. Moth pollination of Metaplexis japonica (Apocynaceae): pollinaria transfer on the tip of the proboscis. J. Pl. Res. 118: 235–262.CrossRefGoogle Scholar
  401. Sukumar, E., Gopal, R.H., Rao, R.B., Viswanathan, S., Thirugnanasbantham, P., Vijayaserkaran, V. 1995. Pharmacological actions of ceropegin, a novel pyridine alkaloid from Ceropegia juncea. Fitoterapia 66: 403–406.Google Scholar
  402. Summons, R.E., Ellis, J., Gellert, E. 1972. Steroidal alkaloids of Marsdenia rostrata. Phytochemistry 11: 3335–3339.CrossRefGoogle Scholar
  403. Surveswaran, S., Sun, M., Grimm, G.W., Liede-Schumann, S. 2014. On the systematic position of some Asian enigmatic genera of Asclepiadoideae (Apocynaceae). Bot. J. Linn. Soc. 174: 601–619.CrossRefGoogle Scholar
  404. Suttisri, R., Lee, I.S., Kinghorn, A.D. 1995. Plant derived triterpenoid sweetness inhibitors. J. Ethnopharmacol. 47: 9–26.PubMedCrossRefGoogle Scholar
  405. Swarupanandan, K., Mangaly, J.K., Sonny, T.K., Kishorekumar, K., Chand Basha, S. 1996. The subfamilial and tribal classification of the family Asclepiadaceae. Bot. J. Linn. Soc. 120: 327–369.CrossRefGoogle Scholar
  406. Sylla, T., Albers, F. 1989. Samenentwicklung und Samenmorphologie krautiger und sukkulenter Asclepiadaceae. Bot. Jahrb. Syst. 110: 479–492.Google Scholar
  407. Tanaka, H., Hatano, T., Kaneko, N., Kawachino, S., Kitamura, O., Suzuki, Y., Tada, T., Yaoi, Y. 2006. Andromonoecious sex expression of flowers and pollinia delivery by insects in a Japanese milkweed Metaplexis japonica (Asclepiadaceae), with special reference to its floral morphology. Pl. Spec. Biol. 21: 193–199.CrossRefGoogle Scholar
  408. Tank, D.C., Eastman, J.M., Pennell, M.W., Soltis, P.S., Soltis, D.E., Hinchliff, C.E., Brown, J.W., Sessa, E.B., Harmon, L.J. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207: 454–467. doi:  https://doi.org/10.1111/nph.13491
  409. Taylor, W.I., Farnsworth, N. (eds.) 1975. The Catharanthus Alkaloids: Botany, chemistry, pharmacology, and clinical use. New York: Marcel Dekker, Inc.Google Scholar
  410. Teo, S. 2001. Alstonia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 61–68. Leiden: Backhuys.Google Scholar
  411. Thiv, M., Struwe, L., Albert, V.A., Kadereit, J.W. 2000 [1999]. The phylogenetic relationships of Saccifolium bandeirae (Gentianaceae) reconsidered. Harvard Pap. Bot. 4: 519–526.Google Scholar
  412. Thomas, V., Dave, Y. 1994. Significance of follicle anatomy of Apocynaceae. Acta Soc. Bot. Pol. 63: 9–20.CrossRefGoogle Scholar
  413. Thorne, R.F. 1992. An updated phylogenetic classification of the flowering plants. Aliso 13: 365–389.CrossRefGoogle Scholar
  414. Torres, C., Galetto, L. 1998. Patterns and implications of floral nectar secretion, chemical composition, removal effects and standing crop in Mandevilla pentlandiana (Apocynaceae). Bot. J. Linn. Soc. 127: 207–223.Google Scholar
  415. Torres, C., Galetto, L. 1999. Factors constraining fruit set in Mandevilla pentlandiana (Apocynaceae). Bot. J. Linn. Soc. 129: 239–247.Google Scholar
  416. Tran, C.K. 2001. Cerbera. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 151–155. Leiden: Backhuys.Google Scholar
  417. Treiber, K. 1891. Anatomischer Bau des Stammes der Asclepiadaceae. Bot. Centralbl. 48: 209–218.Google Scholar
  418. Trigo, J.R., Brown, K.S., Jr. 1990. Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1: 22–29.CrossRefGoogle Scholar
  419. Trivedi, B.S., Upadhyay, N. 1984. Cuticular studies of Asclepiadaceae. J. Indian Bot. Soc. 63: 129–147.Google Scholar
  420. Usher, G. 1974. A Dictionary of Plants Used by Man. London: Constable.Google Scholar
  421. Van Beck, T.A., Van Gessel, M.A.J.T. 1988. Alkaloids of Tabernaemontana species. In: Pelletier, S.W. (ed.) Alkaloids: Chemical and biological perspectives, Vol. 6. New York: Wiley, pp. 76–226.Google Scholar
  422. Van Beck, T.A., Verpoorte, R., Baerheim-Svendsen, A., Leeuwenberg, A.J.M., Bisset, N.G. 1984. Tabernaemontana L. (Apocynaceae): A review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J. Ethnopharmacol. 10: 1–156.CrossRefGoogle Scholar
  423. Van de Ven, E.A., Van der Ham, R.W.J.M. 2006. Pollen of Melodinus (Apocynaceae): Monads and tetrads. Grana 45: 1–8.Google Scholar
  424. Van der Ham, R., Zimmermann, Y.-M., Nilsson, S., Igersheim, A. 2001. Pollen morphology of the Alyxieae (Apocynaceae). Grana 40: 169–191. doi:  https://doi.org/10.1080/001731301317223114
  425. Van der Heijden, R., Jacobs, D.I., Snoeijer, W., Hallard, D., Verpoorte, R. 2004. The Catharanthus alkaloids: Pharmacognosy and biotechnology. Curr. Med. Chem. 11: 607–628. doi:  https://doi.org/10.2174/0929867043455846
  426. Van der Laan, F.M., Arends, J.C. 1985. Cytotaxonomy of the Apocynaceae. Genetica 68: 3–35.CrossRefGoogle Scholar
  427. Van der Ploeg, J. 1985. Revision of genera Cyclocotyla Stapf, Dewevrella De Wild. and of the African species of the genus Malouetia A. DC. (Apocynaceae). Series of revisions of Apocynaceae, XVIII. Wageningen Agric. Univ. Pap. 85.2: 57–83.Google Scholar
  428. Van der Weide, J.C., Van der Ham, R.W.J.M. 2012. Pollen morphology and phylogeny of the tribe Tabernaemontaneae (Apocynaceae, subfamily Rauvolfioideae). Taxon: 61: 131–145.CrossRefGoogle Scholar
  429. Van Heerden, F.R. 2008. Hoodia gordonii: A natural appetite suppressant. J. Ethnopharmacol. 119: 434–437. doi:  https://doi.org/10.1016/j.jep.2008.08.023
  430. Van Roosmalen, M.G.M. 1985. Fruits of the Guianan Flora. Wageningen: Veenman.Google Scholar
  431. Van Valkenburg, J.L.C.H., Hendrian. 2001. Ochrosia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 386–389. Leiden: Backhuys.Google Scholar
  432. Van Valkenburg, J.L.C.H., Horsten, S.F.A.J. 2001. Thevetia. In: Van Valkenburg, J.L.C.H., Bunyapraphatsara, N. (eds.) Plant Resources of South-East Asia, Vol. 12(2): 544–546. Leiden: Backhuys.Google Scholar
  433. Venter, H.J.T. 2009. A taxonomic revision of Raphionacme (Apocynaceae: Periplocoideae). S. African J. Bot. 75: 292–350. doi:  https://doi.org/10.1016/j.sajb.2009.02.174
  434. Venter, H.J.T., Verhoeven, R.L. 2001. Diversity and relationships within Periplocoideae. Ann. Missouri Bot. Gard. 88: 550–568.CrossRefGoogle Scholar
  435. Verhoeven, R.L., Venter, H.J.T. 1998. Pollinium structure in Periplocoideae (Apocynaceae). Grana 37: 1–14. doi:  https://doi.org/10.1080/00173139809362633
  436. Verhoeven, R.L., Venter, H.J.T. 2001. Pollen morphology of the Periplocoideae, Secamonoideae and Asclepiadoideae (Apocynaceae). Ann. Missouri Bot. Gard. 88: 569–582. doi:  https://doi.org/10.2307/3298634
  437. Verhoeven, R.L., Liede, S., Endress, M.E. 2003. The tribal position of Fockea and Cibirhiza (Apocynaceae: Asclepiadoideae): evidence from pollinium structure and cpDNA sequence data. Grana 42: 70–81. doi:  https://doi.org/10.1080/00173130310012549
  438. Vieira, M.F., Shepherd, G.J. 1999. Pollination of Oxypetalum (Asclepiadaceae) in southeastern Brazil. Rev. Brasil. Biol. 59: 693–704.PubMedCrossRefGoogle Scholar
  439. Waddington, K.D. 1976. Pollination of Apocynum sibiricum (Apocynaceae) by Lepidoptera. Southwest. Naturalist 21: 31–36.CrossRefGoogle Scholar
  440. Wagenitz, G. 1964. Gentianales. In: Melchior, H. (ed.) Engler’s Syllabus der Pflanzenfamilien. Berlin: Borntraeger, pp. 405–425.Google Scholar
  441. Walker, D.B. 1975. Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). I. Light and scanning electron microscopic study of gynoecial ontogeny. Amer. J. Bot. 64: 457–467.CrossRefGoogle Scholar
  442. Walker, D.B. 1978. Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). IV. Significance of the fusion. Amer. J. Bot. 65: 119–121.CrossRefGoogle Scholar
  443. Walther, R. 1994. Pollenfracht als Indikator fuer Ressourcennutzung und Einnischung bei madagassischen Schwärmern (Lepidoptera). Ph.D. Thesis, Friedrich-Alexander University, Erlangen-Nürnberg.Google Scholar
  444. Wanntorp, H.-E. 1974. Calotropis gigantea (Asclepiadaceae) und Xylocopa tenuiscapa (Hymenoptera, Apidae): Studies in flower morphology and pollination biology. Svensk Bot. Tidskr. 68: 25–32.Google Scholar
  445. Wanntorp, H.-E. 1988 [1989]. The genus Microloma (Asclepiadaceae). Opera Bot. 98: 1–69.Google Scholar
  446. Wanntorp, L., Forster, P.I. 2007. Phylogenetic relationships between Hoya and the monotypic genera Madangia, Absolmsia, and Micholitzia (Apocynaceae, Marsdenieae): Insights from flower morphology. Ann. Missouri Bot. Gard. 94: 36–55. doi:  https://doi.org/10.3417/0026-6493(2007)94[36:prbhat]2.0.co;2
  447. Watt, J.M., Breyer-Brandwijk, M.G. 1962. The Medicinal and Poisonous Plants of Southern Africa. Edinburgh: E. and S. Livingstone.Google Scholar
  448. Williams, L.O. 1981. Asclepiadaceae. In: The useful plants of Central America. Ceiba 24: 3–381.Google Scholar
  449. Williams, J.K., Stutzman, J.K. 2008. Chromosome number of Thevetia ahouai (Apocynaceae: Rauvolfioideae: Plumerieae) with discussion on the generic boundaries of Thevetia. J. Bot. Res. Inst. Texas 2: 489–493.Google Scholar
  450. Winks, C.J., Fowler, S.V. 2000. Prospects for biological control of moth plant Araujia sericifera (Asclepiadaceae). Landcare Research Contract Report LC9900/100 (unpubl.), Auckland, New Zealand.Google Scholar
  451. Wong, S.K., Lim, Y.Y., Chan, E.W.C. 2013. Botany, uses, phytochemistry and pharmacology of selected Apocynaceae species: A review. Pharmacognosy Comm. 3: 2–11.CrossRefGoogle Scholar
  452. Woodell, S.R.J. 1979. The role of unspecific pollinators in the reproductive success of Aldabran plants. Philos. Trans., Ser. B 286: 99–108.CrossRefGoogle Scholar
  453. Woodson, R.E., Jr. 1936. Studies in the Apocynaceae. IV. The American genera of Echitoideae. Ann. Missouri Bot. Gard. 23: 169–438.CrossRefGoogle Scholar
  454. Woodson, R.E., Jr. 1954. The North American species of Asclepias. Ann. Missouri Bot. Gard. 41: 1–211.CrossRefGoogle Scholar
  455. Wrangham, R.W., Waterman, P.G. 1983. Condensed tannins in fruits eaten by chimpanzees. Biotropica 15: 214–222.CrossRefGoogle Scholar
  456. Wyatt, R. 1976. Pollination and fruit-set in Asclepias: a reappraisal. Amer. J. Bot. 63: 845–851.CrossRefGoogle Scholar
  457. Wyatt, R. 1981. The reproductive biology of Asclepias tuberosa II. Factors determining fruit-set. New Phytol. 88: 375–185.CrossRefGoogle Scholar
  458. Wyatt, R., Broyles, S.B. 1994. Ecology and evolution of reproduction in milkweeds. Ann. Rev. Ecol. Syst. 25: 423–441.CrossRefGoogle Scholar
  459. Wyatt, R., Broyles, S.B. 1997. The weedy tropical milkweeds Asclepias curassavica and A. fruticosa are self-compatible. Biotropica 29: 232–234.CrossRefGoogle Scholar
  460. Wyatt, R., Edwards, A.L., Lipow, S.R., Ivey, C.T. 1998. The rare Asclepias texana and its widespread sister species, A. perennis, are self-incompatible and interfertile. Syst. Bot. 23: 151–156.CrossRefGoogle Scholar
  461. Yaman, B., Tumen, I. 2012. Anatomical notes on Marsdenia erecta (Apocynaceae) wood: Is it secondarily woody? Dendrobiology 67: 87–93.Google Scholar
  462. Yamashiro, T., Yamashiro, A., Yokoyama, J., Maki, M. 2008. Morphological aspects and phylogenetic analyses of pollination systems in the Tylophora – Vincetoxicum complex (Apocynaceae-Asclepiadoideae) in Japan. Biol. J. Linn. Soc. 93: 325–341.CrossRefGoogle Scholar
  463. Yamauchi, T., Abe, F. 1990. Cardiac glycosides and pregnanes from Adenium obesum (Studies on the constituents of Adenium 1). Chem. Pharm. Bull. 38: 669–672.PubMedCrossRefGoogle Scholar
  464. Yamauchi, T., Abe, F., Santisuk, T. 1990. Cardiac glycosides of Beaumontia brevituba and B. murtonii. Phytochemistry 29: 1961–1965.PubMedCrossRefGoogle Scholar
  465. Yang, L.-L., Li, H.-L., Wei, L., Yang, T., Kuang, D.-Y., Li, M.-H., Liao, Y.-Y., Chen, Z.-D., Wu, H., Zhang, S.-Z. 2016. A supermatrix approach provides a comprehensive genus-level phylogeny for Gentianales. J. Syst. Evol. 54: 400–415.CrossRefGoogle Scholar
  466. Yoshikawa, M., Murakami, T., Kadoya, M., Yuhao, L.I., Murakami, N., Yamahara, J., Matsuda, H. 1997. Medicinal foodstuffs. IX. The inhibitors of glucose absorption from the leaves of Gymnema sylvestre R. Br. (Asclepiadaceae): structures of gymnemosides a and b. Chem. Pharm. Bull. 45: 1671–1676.PubMedCrossRefGoogle Scholar
  467. Young, J., Weed, A.S. 2014. Hypena opulenta (Erebidae): A European species for the biological control of invasive Swallow-worts (Vincetoxicum spp.) in North America. J. Lepid. Soc. 68: 162–166.Google Scholar
  468. Zarucchi, J.L. 1987. A revision of the tribe Ambelanieae (Apocynaceae – Plumerioideae). Series of revisions of Apocynaceae, part XXIV. Agric. Univ. Wageningen Pap. 87: 1–106.Google Scholar
  469. Zarucchi, J.L., Morillo, G., Endress, M.E., Hansen, B.F., Leeuwenberg, A.J.M. 1995. Apocynaceae. 2: 471–571. In: Berry, P.E., Holst, B.K., Yatskievych, K. (eds.) Flora of the Venezuelan Guyana. St. Louis, Missouri: Missouri Botanical Garden Press.Google Scholar
  470. Zhu, J.-P., Guggisberg, A., Kalt-Hadamowsky, A., Hesse, M. 1990. Chemotaxonomic study of the genus Tabernaemontana (Apocynaceae) based on their indole alkaloid content. Pl. Syst. Evol. 172: 13–34.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. E. Endress
    • 1
    Email author
  • U. Meve
    • 2
  • D. J. Middleton
    • 3
  • S. Liede-Schumann
    • 4
  1. 1.Institute of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
  2. 2.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  3. 3.Singapore Botanic Gardens, National Parks BoardSingaporeSingapore
  4. 4.University of BayreuthBayreuthGermany

Personalised recommendations