Advertisement

Torricelliaceae

Torricelliaceae Hu, Bull. Fan Mem. Inst. Biol. Bot. 5: 313 (1934).
  • G. M. PlunkettEmail author
  • Q. -Y. Xiang
  • P. P. LowryII
  • G. E. Schatz
Chapter
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 15)

Abstract

Small trees or shrubs, evergreen or deciduous; plants dioecious or hermaphroditic, lacking secretory canals. Leaves spiral and simple; margins often dentate, serrate, crenate to pinnatifid, more rarely entire; leaf venation pinnate or palmate; petioles exstipulate and distinctly sheathing; blades chartaceous to subcoriaceous or somewhat succulent, glabrous or trichomes unicellular or multicellular, unbranched, glandular and sometimes also nonglandular. Inflorescence terminal (occasionally in the upper leaf axils) and paniculate with racemules or cymules as the ultimate inflorescence unit (or bifid of two racemes), erect or pendulous. Flowers minute to medium-sized, perfect or imperfect, actinomorphic, epigynous, pedicel articulated or not, bracteolate; calyx a low rim or tube with (3–)5 small teeth or subequal lobes; corolla imbricate or induplicate-valvate; petals free 5 (sometimes lacking), broad at base, plane or inflexed at apex, ovate to long-elliptical; stamens 5 (lacking or present as staminodia in carpellate flowers), alternipetalous; anthers tetrasporangiate, basi- or dorsifixed, with longitudinal dehiscence; pollen tricolporate; carpels 3, connate; ovary inferior; epigynous disc absent to flat or forming a gibbous stylopodium; styles 3, free, erect to recurving (sometimes bifid); locules 3, sometimes all but one aborting; a single functional ovule per ovary (others abortive); ovules pendant and anatropous, placentation apical or axile. Fruits drupaceous, single-seeded crowned by the persistent calyx and styles; exocarp smooth, mesocarp fleshy, endocarp sclerified or lignified. Seeds with copious endosperm (ruminate or uniform) and a small embryo.

Selected Bibliography

  1. Adams, J.E. 1949. Studies in the comparative anatomy of the Cornaceae. J. Elisha Mitchell Sci. Soc. 65: 218–244.Google Scholar
  2. Baker, J.G. 1884. Further contributions to the flora of central Madagascar. J. Linn. Soc., Bot. 21: 317–353.Google Scholar
  3. Bate-Smith, E.C. 1980. The systematic position of Aralidium Miq. – a multidisciplinary study. 5. A note on the phenolic constituents. Taxon 29: 412.CrossRefGoogle Scholar
  4. Bate-Smith, E.C., Ferguson, I.K., Hutson, K., Nielsen, B.J., Swain, T. 1975. Phytochemical interrelationships in the Cornaceae. Biochem. Syst. Ecol. 3: 79–89.CrossRefGoogle Scholar
  5. Bentham, G. 1867. Araliaceae. In: Bentham, G., Hooker, J.D. (eds.) Genera Plantarum, 1. London: Reeve & Co, pp. 931–947.Google Scholar
  6. Catalogue of the Vascular Plants of Madagascar. 2018. http://www.tropicos.org/Name/40016214 [accessed 31 Aug. 2018].
  7. Chandler, G.T., Plunkett, G.M. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Bot. J. Linn. Soc. 144: 123–147.CrossRefGoogle Scholar
  8. Cronquist, A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press.Google Scholar
  9. Cronquist, A. 1988. The evolution and classification of flowering plants. 2nd ed., New York: New York Botanical Garden.Google Scholar
  10. Dahlgren, R.M.T. 1980. A revised system of classification of the angiosperms. Bot. J. Linn. Soc. 80: 91–124.CrossRefGoogle Scholar
  11. Eyde, R.H. 1967. The peculiar gynoecial vasculature of Cornaceae and its systematic significance. Phytomorphology 17: 172–182.Google Scholar
  12. Eyde, R.H. 1988. Comprehending Cornus: puzzles and progress in the systematics of the dogwoods. Bot. Rev. 54: 233–351.CrossRefGoogle Scholar
  13. Ferguson, I.K., Hideux, M.J. 1978. Some aspects of the pollen morphology and its taxonomic significance in Cornaceae sens. lat. Proc. IV Int. Palynol. Conf., Lucknow (1976–1977) 1: 240–249.Google Scholar
  14. Harms, H. 1897. Araliaceae. In: Natürl. Pflanzenfam. III, 8. Leipzig: Engelmann, pp. 1–62.Google Scholar
  15. Harms, H. 1898. Cornaceae. In: Natürl. Pflanzenfam. III, 8. Leipzig: Engelmann, pp. 250–270.Google Scholar
  16. Hellmayer, E.M., Kiehn, M., Weber, A. 1994. Chromosome numbers of Malayan rain-forest Angiosperms. Beitr. Biol. Pflanzen 68: 51–71.Google Scholar
  17. Hu, W. 1990. Toricellia. In: Fang, W., Hu, W. (eds.) Fl. Reipubl. Popularis Sin. 56: 35–38.Google Scholar
  18. Hutchinson, J. 1967. The genera of flowering plants (Angiospermae). Dicotyledones, Vol. 2. Oxford: Clarendon Press, p. 46.Google Scholar
  19. Jensen, S.R., Nielsen, B.J. 1980. Iridoid glucosides in Griselinia, Aralidium and Toricellia. Phytochemistry 19: 2685–2688.CrossRefGoogle Scholar
  20. Li, H.-L., Chao, C.-Y. 1954. Comparative anatomy of the woods of the Cornaceae and allies. Quart. J. Taiwan Mus. 7: 119–136.Google Scholar
  21. Liang, G., Xu, B., Pan, W., Cao, P., Zhang, Y., Lu, Y., Wu, Y., Hao, X. 2009. A novel iridoid from Torricellia angulata var. intermedia. Nat. Prod. Res. 23: 1–4.CrossRefGoogle Scholar
  22. Manchester, S.R. 1999. Biogeographical relationships of North American Tertiary floras. Ann. Missouri Bot. Gard. 86: 472–522.CrossRefGoogle Scholar
  23. Manchester, S.R., Chen, Z.-D., Lu, A.-M., Uemura, K. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J. Syst. Evol. 47: 1–42.CrossRefGoogle Scholar
  24. Meller, B. 2006. Comparative investigation of modern and fossil Toricellia fruits – a disjunctive element in the Miocene and Eocene of Central Europe and the USA. Beitr. Paläont. 30: 315–327.Google Scholar
  25. Miquel, F.A.W. 1856. Araliacearum indicarum genera et species aliquot novae. Bonplandia 4: 137–139.Google Scholar
  26. Nicolas, A.N., Plunkett, G.M. 2009. The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order Apiales. Molec. Phylogen. Evol. 53: 134–151.CrossRefGoogle Scholar
  27. Noshiro, S., Baas, P. 1998. Systematic wood anatomy of Cornaceae and allies. IAWA J. 19: 43–97.CrossRefGoogle Scholar
  28. Oginuma, K, Gu, Z., Yue, Z., Kondo, K. 1994a. Chromosomes of some woody plants native to Yunnan, China. Kromosomo 73: 2491–2497.Google Scholar
  29. Oginuma, K., Tobe, H., Ohba, H. 1994b. Chromosomes of some woody plants from Nepal. Acta Phytotax. Geobot. 45: 15–22.Google Scholar
  30. Philipson, W.R. 1979. Araliaceae. In: van Steenis, C.G.G.J. (ed.) Fl. Malesiana I, 9. The Hague: W. Junk Publ., pp. 1–105.Google Scholar
  31. Philipson, W.R., Butterfield, B.G. 1980. The systematic position of Aralidium Miq. – a multidisciplinary study. 2. Wood anatomy. Taxon 29: 404–406.CrossRefGoogle Scholar
  32. Philipson, W.R., Stone, B.C. 1980. The systematic position of Aralidium Miq. – a multidisciplinary study. 1. Introduction and floral and general anatomy. Taxon 29: 391–404.CrossRefGoogle Scholar
  33. Plunkett, G.M. 2001. Relationship of the order Apiales to subclass Asteridae: a reevaluation of morphological characters based on insights from molecular data. Edinb. J. Bot. 58: 183–200.CrossRefGoogle Scholar
  34. Plunkett, G.M., Soltis, D.E., Soltis, P.S. 1996. Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Amer. J. Bot. 83: 499–515.CrossRefGoogle Scholar
  35. Plunkett, G.M., Soltis, D.E., Soltis, P.S. 1997. Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Amer. J. Bot. 84: 565–580.CrossRefGoogle Scholar
  36. Plunkett, G.M., Chandler, G.T., Lowry, P.P. II, Pinney, S.M., Sprenkle, T.S. 2004. Recent advances in understanding Apiales and a revised classification. S. African J. Bot. 70: 371–381.CrossRefGoogle Scholar
  37. Schatz, G.E., Lowry, P.P. II, Wolf, A.-E. 1998. Endemic families of Madagascar. I. A synoptic revision of Melanophylla Baker (Melanophyllaceae). Adansonia III, 20: 233–242.Google Scholar
  38. Seemann, B.C. 1865. Revision of the natural order Hederaceae. IX. On the genera Toricellia, Decostea, and Adoxa. J. Bot. 3: 361–363, t. 41.Google Scholar
  39. Sokoloff, D.D., Karpunina, P.V., Nuraliev, M.S., Oskolski, A.A. 2018. Flower structure and development in Melanophylla (Torricelliaceae: Apiales): lability in direction of corolla contortion and orientation of pseudomonomerous gynoecium in a campanulid eudicot. Bot. J. Linn. Soc. (early on-line publ.).Google Scholar
  40. Takhtajan, A. 1997. Diversity and classification of flowering plants. New York: Columbia University Press.Google Scholar
  41. Tang, Y.-C., Xiang, Q.-Y., Cao, Y.-L. 1984. Cytological studies on some plants of Sichuan and neighboring regions - I. Acta Phytotax. Sin. 22: 343–350.Google Scholar
  42. Thorne, R.F. 2000. The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae. Bot. Rev. 66: 441–647.CrossRefGoogle Scholar
  43. Trifonova, V.I. 1998. Fruit and seed anatomy of the genus Melanophylla (Melanophyllaceae) in relation to its taxonomical position. Bot. Zhurn. 83: 97–103.Google Scholar
  44. Tseng, C.C. 1980. The systematic position of Aralidium Miq. – a multidisciplinary study. 3. Pollen morphology. Taxon 29: 407–409.CrossRefGoogle Scholar
  45. Wangerin, W. 1910. Cornaceae. In: Pflanzenreich IV, 229. 101 pp. Leipzig: Engelmann.Google Scholar
  46. Xiang, Q., Boufford, D.E. 2005. Toricelliaceae. Fl. China 14: 233–234.Google Scholar
  47. Xiang, Q.-Y., Soltis, D.E. 1998. RbcL sequence data define a cornaceous clade and clarify relationships of Cornaceae sensu lato. In: Boufford, D.E., Ohba, H. (eds.) Sino-Japanese flora – its characteristics and diversification. Tokyo: University of Tokyo Press.Google Scholar
  48. Yembaturova, E.Y., Konstantinova, A.I. 2013. Fruit structure of the genus Toricellia DC. (Toricelliaceae) and its taxonomic position in the order Apiales. Izv. Timiryazev Agric. Acad., special issue, pp. 197–205.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. M. Plunkett
    • 1
    Email author
  • Q. -Y. Xiang
    • 2
  • P. P. LowryII
    • 3
    • 4
  • G. E. Schatz
    • 3
  1. 1.Cullman Program for Molecular SystematicsNew York Botanical GardenBronxUSA
  2. 2.Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighUSA
  3. 3.Missouri Botanical GardenSt. LouisUSA
  4. 4.Institut de Systématique, Évolution et Biodiversité (ISYEB)Muséum national d’Histoire naturelle, Sorbonne UniversitésParisFrance

Personalised recommendations