Advertisement

Leaf Anatomy and Function

  • Riichi OguchiEmail author
  • Yusuke Onoda
  • Ichiro Terashima
  • Danny Tholen
Chapter
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 44)

Summary

Plant leaves provide the following main functions: (1) light interception and utilization of light energy for photosynthesis. This includes efficient light absorption under low and moderate light, while reducing excess light absorption under high light. (2) Incorporating CO2 as the substrate of photosynthesis, while limiting the amount of water lost. (3) Maintaining a stable internal environment for physiological processes by modulating leaf temperature. (4) Maintaining structural integrity that allows leaves to photosynthesize under various mechanical stresses such as gravity, wind, rainfall and herbivory. (5) Transporting water, photosynthates, and nutrients to realize efficient functioning of the plant and the leaf.

Subjected to both anatomical and environmental constraints, natural selection has resulted in an intricate leaf anatomy that balances the above functions and allows plants to grow and produce progeny. As a result, plants coordinate size, number, shape, and arrangement of cells, adjust the thickness and chemical composition of cell walls, and utilize physical phenomena such as water evaporation, refraction, and reflection of light.

In the present chapter, common features of leaf anatomy are described and the current knowledge related to its functions is summarized. Special emphasis will be given to leaf optical properties, gas diffusion, water transport, and mechanical properties. Acclimation and adaptation of leaf anatomy in response to environmental conditions will be reviewed. In addition, we will discuss the physiological mechanisms and ecological significance of these responses.

Abbreviations

a

a dimensionless correction factor to account for the fact that the mesophyll thickness is not equal to the effective distance between stomata and chloroplasts because of the spacing of stomata on the leaf surface and the presence of CO2 sinks along the diffusion path

BSE

bundle-sheath extensions

c

a dimensionless empirical coefficient, linking the boundary layer thickness to windspeed, leaf width, and air viscosity

Ci

CO2 concentration inside the leaf

d

leaf width measured in the direction of the wind

D

diffusion coefficient of CO2 through air

Dv

diffusion coefficient of water vapor

EB

Young’s modulus in a bending test

Ec

Young’s modulus of the mesophyll

Ef

Young’s modulus of the epidermis

ET

Young’s modulus in a tensile test

gias

conductance through intercellular airspaces

gm

mesophyll conductance

gs

stomatal conductance

HA

high-light apex

helox

air with nitrogen replaced by helium

HH

plants grown in high light

HL

plants grown in high light then transferred to low light

L

mesophyll thickness

LA

low-light apex

LMA

leaf dry mass per area

PAR

wavelengths of light absorbed by chlorophyll and utilized in photosynthesis

rias

resistance of CO2 to diffusion in the intercellular air space

rliq

resistance of CO2 to diffusion in mesophyll liquid phase

Rubisco

ribulose-1,5-bisphosphate carboxylase/oxygenase

s

solubility of CO2 in apoplastic water

Sc

chloroplast surface area facing intercellular spaces per unit leaf area

α

a material specific constant that links the tortuosity factor to the porosity of a porous structure

αm

thickness fraction of the mesophyll

β

the ratio of Young’s modulus of the mesophyll tissue to that of the epidermis, Ec /Ef

δ

boundary layer thickness

ρ

porosity of the leaf

τ

tortuosity factor

u

wind speed

v

kinematic viscosity of air

Notes

Acknowledgments

We thank Dr. Chieko Saito, Dr. Dagmar Voigt, Ms. Elinor Goodman, Dr. Margaret Barbour, Dr. Shinichi Miyazawa, Dr. Shinya Wada, Dr. Susanne Scheffknecht, Dr. Youshi Tazoe, and Dr. Xiaofeng Yin for their leaf anatomical photographs. We thank Dr. Chris Muir, Dr. Jaume Flexas, Ms. Natascha Luijken, and Dr. Thomas D. Sharkey for their helpful comments on the manuscript and Dr. Flexas and Dr. Muir for making available additional data on leaf anatomy.

References

  1. Aalto T, Juurola E (2002) A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant Cell Environ 25:1399–1409CrossRefGoogle Scholar
  2. Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28:765–774Google Scholar
  3. Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, . . . Hirasawa T (2013) The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J Exp Bot 64: 1061—1072PubMedCrossRefGoogle Scholar
  4. Ahmad M, Cashmore AR (1993) Hy4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166CrossRefGoogle Scholar
  5. Amada G, Onoda Y, Ichie T, Kitayama K (2017) Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics in Metrosideros polymorpha (Myrtaceae). Biotropica 49:482–492CrossRefGoogle Scholar
  6. Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams WW (2005) Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci USA 102:12968–12973PubMedCrossRefGoogle Scholar
  7. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II – Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  8. Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, . . . Belkin S (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14: 140—146PubMedCrossRefGoogle Scholar
  9. Augsten H, Wejnar R, Petermann F (1971) Einige Bemerkungen zur anatomisch-entwicklungsgeschichtlichen Terminologie des Blattes. Österr bot Z 119:572–576CrossRefGoogle Scholar
  10. Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM (2006) Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Sci 170:596–605CrossRefGoogle Scholar
  11. Bacelar EA, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CA (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192CrossRefGoogle Scholar
  12. Ballantine JEM, Forde BJ (1970) The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean. Am J Bot 57:1150–1159CrossRefGoogle Scholar
  13. Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210:875–889CrossRefGoogle Scholar
  14. Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M et al (2010) The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater 22:2325–2328PubMedCrossRefGoogle Scholar
  15. Bartoli G, Bottega S, Forino LMC, Ciccarelli D, Spano C (2014) Plant adaptation to extreme environments: The example of Cistus salviifolius of an active geothermal alteration field. C R Biol 337:101–110PubMedCrossRefGoogle Scholar
  16. Bartoli G, Bottega S, Spano C (2015) Morpho-anatomical and physiological traits of Agrostis castellana living in an active geothermal alteration field. Biologia 70:744–752CrossRefGoogle Scholar
  17. Bauer H, Thoni W (1988) Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helix. Physiol Plant 73:31–37CrossRefGoogle Scholar
  18. Beerling DJ, Kelly CK (1996) Evolutionary comparative analyses of the relationship between leaf structure and function. New Phytol 134:35–51CrossRefGoogle Scholar
  19. Benz BW, Martin CE (2006) Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol 163:648–656PubMedCrossRefGoogle Scholar
  20. Bhushan B, Jung YC (2006) Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces. Nanotechnology 17:2758–2772CrossRefGoogle Scholar
  21. Björkman O (1981) Response to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant Ecology Responses to the Physical Environment, Encyclopedia of Plant Physiology, New Series, Vol 12A. Springer, Berlin, pp 57–107Google Scholar
  22. Boese SR, Huner NPA (1990) Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiol 94:1830–1836PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bone RA, Lee DW, Norman JM (1985) Epidermal cells functioning as lenses in leaves of tropical rain forest shade plants. Appl Opt 24:1408–1412PubMedCrossRefGoogle Scholar
  24. Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379CrossRefGoogle Scholar
  25. Boyer JS (1985) Water transport. Annu Rev Plant Physiol Plant Mol Biol 36:473–516CrossRefGoogle Scholar
  26. Bredenkamp CL, Van Wyk AB (2001) Leaf anatomy of the genus Passerina (Thymelaeaceae): taxonomic and ecological significance. Bothalia 31:53–70Google Scholar
  27. Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15:33–62PubMedCrossRefGoogle Scholar
  28. Brodersen CR, Vogelmann TC (2007) Do epidermal lens cells facilitate the absorptance of diffuse light? Am J Bot 94:1061–1066PubMedCrossRefGoogle Scholar
  29. Brodersen CR, Vogelmann TC (2010) Do changes in light direction affect absorption profiles in leaves? Funct Plant Biol 37:403–412CrossRefGoogle Scholar
  30. Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898PubMedPubMedCentralCrossRefGoogle Scholar
  31. Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498CrossRefGoogle Scholar
  32. Brubaker CL, Lersten NR (1995) Paraveinal mesophyll: Review and survey of the subtribe Erythrininae (Phaseoleae, Papilionoideae, Leguminosae). Plant Syst Evol 196:31–62CrossRefGoogle Scholar
  33. Brugnoli E, Björkman O (1992) Chloroplast movements in leaves – Influence on chlorophyll fluorescence and measurements of light-induced absorbency changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35PubMedCrossRefGoogle Scholar
  34. Bucher SF, Auerswald K, Grün-Wenzel C, Higgins SI, Garcia Jorge J, Römermann C (2017) Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate. Flora 229:107–115CrossRefGoogle Scholar
  35. Buckley TN (2015) The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ 38:7–22PubMedCrossRefGoogle Scholar
  36. Buckley TN, Sack L, Gilbert ME (2011) The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiol 156:962–973PubMedPubMedCentralCrossRefGoogle Scholar
  37. Buckley TN, John GP, Scoffoni C, Sack L (2015) How does leaf anatomy influence water transport outside the xylem? Plant Physiol 168:1616–1635PubMedPubMedCentralCrossRefGoogle Scholar
  38. Bunce JA, Patterson DT, Peet MM, Alberte RS (1977) Light acclimation during and after leaf expansion in soybean. Plant Physiol 60:255–258PubMedPubMedCentralCrossRefGoogle Scholar
  39. Burghardt M, Riederer M (2007) Cuticular transpiration. In: Riederer M, Müller C (eds) Annual plant reviews-biology of the plant cuticle, Vol 23, pp 292--311. Blackwell Publishing Ltd, OxfordGoogle Scholar
  40. Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212CrossRefGoogle Scholar
  41. Bussotti F, Bettini D, Grossoni P, Mansuino S, Nibbi R, Soda C, Tani C (2002) Structural and functional traits of Quercus ilex in response to water availability. Environ Exp Bot 47:11–23CrossRefGoogle Scholar
  42. Canny MJ (1990) What becomes of the transpiration stream. New Phytol 114:341–368CrossRefGoogle Scholar
  43. Canny MJ, Huang CX (2006) Leaf water content and palisade cell size. New Phytol 170:75–85PubMedCrossRefGoogle Scholar
  44. Canny M, Wong SC, Huang C, Miller C (2012) Differential shrinkage of mesophyll cells in transpiring cotton leaves: implications for static and dynamic pools of water, and for water transport pathways. Funct Plant Biol 39:91–102CrossRefGoogle Scholar
  45. Caringella MA, Bongers FJ, Sack L (2015) Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants. Plant Cell Environ 38:2735–2746PubMedCrossRefGoogle Scholar
  46. Carolin RC, Jacobs SWL, Vesk M (1973) The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Bot J Linn Soc 66:259–275CrossRefGoogle Scholar
  47. Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427PubMedCrossRefGoogle Scholar
  48. Cashmore AR, Jarillo JA, Wu YJ, Liu DM (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284:760–765PubMedCrossRefGoogle Scholar
  49. Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Marti G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees Struct Funct 11:127–134Google Scholar
  50. Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hort 95:39–50CrossRefGoogle Scholar
  51. Chatelet DS, Clement WL, Sack L, Donoghue MJ, Edwards EJ (2013) The evolution of photosynthetic anatomy in Viburnum (Adoxaceae). Intl J Plant Sci 174:1277–1291CrossRefGoogle Scholar
  52. Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:553–564CrossRefGoogle Scholar
  53. Chonan N (1978) Comparative anatomy of mesophyll among the leaves of gramineous crops. Japan Agric Res Quart 12:128–131Google Scholar
  54. Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96:8779–8783PubMedCrossRefGoogle Scholar
  55. Clark JB, Lister GR (1975a) Photosynthetic action spectra of trees. 1. Comparative photosynthetic action spectra of one deciduous and 4 coniferous tree species as related to photorespiration and pigment complements. Plant Physiol 55: 401—406PubMedPubMedCentralCrossRefGoogle Scholar
  56. Clark JB, Lister GR (1975b) Photosynthetic action spectra of trees. 2. Relationship of cuticle structure to visible and ultraviolet spectral properties of needles from 4 coniferous species. Plant Physiol 55: 407—413Google Scholar
  57. Cochard H, Nardini A, Coll L (2004) Hydraulic architecture of leaf blades: where is the main resistance? Plant Cell Environ 27:1257–1267CrossRefGoogle Scholar
  58. Cordell S, Goldstein G, Meinzer FC, Handley LL (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Funct Ecol 13:811–818CrossRefGoogle Scholar
  59. Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Springer, Dordrecht, pp 347–366Google Scholar
  60. Dalin P, Agren J, Björkman C, Huttunen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 89–105CrossRefGoogle Scholar
  61. Davis PA, Hangarter RP (2012) Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. Photosynth Res 112:153–161PubMedCrossRefGoogle Scholar
  62. Davis PA, Caylor S, Whippo CW, Hangarter RP (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environ 34:2047–2059PubMedCrossRefGoogle Scholar
  63. Delucia EH, Shenoi HD, Naidu SL, Day TA (1991) Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia 87:51–57CrossRefGoogle Scholar
  64. Dengler NG, Nelson T (1999) Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds) C4 Plant Biology. Academic, San Diego, pp 133–172CrossRefGoogle Scholar
  65. Dengler NG, Dengler RE, Donnelly PM, Hattersley PW (1994) Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Ann Bot 73:241–255CrossRefGoogle Scholar
  66. Dörken VM (2013) Leaf dimorphism in Thuja plicata and Platycladus orientalis (thujoid Cupressaceae s. str., Coniferales): the changes in morphology and anatomy from juvenile needle leaves to mature scale leaves. Plant Syst Evolu 299:1991–2001CrossRefGoogle Scholar
  67. Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006) Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot 57:381–390PubMedCrossRefGoogle Scholar
  68. Dumlao MR, Darehshouri A, Cohu CM, Muller O, Mathias J, Adams WW III, Demmig-Adams B (2012) Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. Photosynth Res 113:181–189PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ehleringer JR, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162PubMedCrossRefGoogle Scholar
  70. Ehleringer JR, Mooney H (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200PubMedCrossRefGoogle Scholar
  71. Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Engineer Sci 44:777–779CrossRefGoogle Scholar
  72. Esau K (1965) Plant anatomy. Wiley, HobokenGoogle Scholar
  73. Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104CrossRefGoogle Scholar
  74. Evans JR, Loreto F (2000) Acquisition and diffusion of CO2 in higher plant leaves. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis. Springer, Dordrecht, pp 321–351CrossRefGoogle Scholar
  75. Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767CrossRefGoogle Scholar
  76. Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21:475–495CrossRefGoogle Scholar
  77. Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248PubMedCrossRefGoogle Scholar
  78. Fellows RJ, Boyer JS (1978) Altered ultrastructure of cells of sunflower leaves having low water potentials. Protoplasma 93:381–395CrossRefGoogle Scholar
  79. Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621PubMedPubMedCentralCrossRefGoogle Scholar
  80. Frak E, Le Roux X, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001) Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant Cell Environ 24:1279–1288CrossRefGoogle Scholar
  81. Fukushima K, Hasebe M (2014) Adaxial-abaxial polarity: The developmental basis of leaf shape diversity. Genesis 52:1–18PubMedCrossRefGoogle Scholar
  82. Gal A, Brumfeld V, Weiner S, Addadi L, Oron D (2012) Certain biominerals in leaves function as light scatterers. Adv Mater 24:OP77–OP83PubMedCrossRefGoogle Scholar
  83. Galmés J, Manuel Ochogavía J, Gago J, José Roldán E, Cifre J, Àngel Conesa M (2013) Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ 36:920–935PubMedCrossRefGoogle Scholar
  84. Gates DM (1980) Biophysical ecology. Springer, New YorkCrossRefGoogle Scholar
  85. Gauhl E (1976) Photosynthetic response to varying light intensity in ecotypes of Solanum dulcamara L. from shaded and exposed habitats. Oecologia 22:275–286PubMedCrossRefGoogle Scholar
  86. Gere JM, Timoshenko SP (1999) Mechanics of Materials 4th SI edition. Nelson Thornes, CheltenhamGoogle Scholar
  87. Gibson LJ, Ashby MF, Easterling KE (1988) Structure and mechanics of the iris leaf. J Mater Sci 23:3041–3048CrossRefGoogle Scholar
  88. Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol 162:1632–1651PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gorsuch PA, Pandey S, Atkin OK (2010) Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant Cell Environ 33:244–258PubMedCrossRefGoogle Scholar
  90. Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocasia macrorrhiza. Physiol Plant 106:421–428CrossRefGoogle Scholar
  91. Gorton HL, Herbert SK, Vogelmann TC (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Plant Physiol 132:1529–1539PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gregoriou K, Pontikis K, Vemmos S (2007) Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica 45:172–181CrossRefGoogle Scholar
  93. Groom PK, Lamont BB (1997) Xerophytic implications of increased sclerophylly: Interactions with water and light in Hakea psilorrhyncha seedlings. New Phytol 136:231–237CrossRefGoogle Scholar
  94. Grubb PJ (1986) Sclerophylls, pachyphylls and pycnophylls: the nature and significance of hard leaf surfaces. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold, London, pp 137–150Google Scholar
  95. Haberlandt G (1914) Physiologische Pflanzenanatomie. W Engelmann, LeipzigGoogle Scholar
  96. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461PubMedCrossRefGoogle Scholar
  97. Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030CrossRefGoogle Scholar
  98. Harada A, Takemiya A, Inoue S, Sakai T, Shimazaki K (2013) Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol 54:36–47PubMedCrossRefGoogle Scholar
  99. Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ (2009) Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Environ 32:1596–1611PubMedCrossRefGoogle Scholar
  100. Hatakeyama Y, Ueno O (2017) Intracellular position of mitochondria in mesophyll cells differs between C3 and C4 grasses. J Plant Res 130:885–892PubMedCrossRefGoogle Scholar
  101. Haupt W, Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13:595–614CrossRefGoogle Scholar
  102. He J, Chee CW, Goh CJ (1996) ‘Photoinhibition’ of Heliconia under natural tropical conditions: The importance of leaf orientation for light interception and leaf temperature. Plant Cell Environ 19:1238–1248CrossRefGoogle Scholar
  103. Hendricks SB (1960) Rates of change of phytochrome as an essential factor determining photoperiodism in plants. Cold Spr Harbor Symp Quant Biol 25:245–248CrossRefGoogle Scholar
  104. Higa T, Wada M (2016) Chloroplast avoidance movement is not functional in plants grown under strong sunlight. Plant Cell Environ 39:871–882PubMedCrossRefGoogle Scholar
  105. Ho QT, Berghuijs HNC, Watte R, Verboven P, Herremans E, Yin XY, . . . Nicolai BM (2016) Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell Environ 39: 50—61PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hofreiter A, Lyshede OB (2006) Functional leaf anatomy of Bomarea Mirb. (Alstroemeriaceae). Bot J Linn Soc 152:73–90CrossRefGoogle Scholar
  107. Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230CrossRefGoogle Scholar
  108. Ichie T, Inoue Y, Takahashi N, Kamiya K, Kenzo T (2016) Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. J Plant Res 129:625–635PubMedCrossRefGoogle Scholar
  109. Imamura S (1931) Über die dorsiventralität der unifazialen Blätter von Iris japonica, Thunb. und ihre Beeinflussbarkeit durch die Schwerkraft. Memoirs of the College of Science. Kyoto Imperial Univ Ser B 6:271–331Google Scholar
  110. Imamura S, Hida M (1956) Dorsiventral structure of unifacial leaves in several Iris species. Bot Mag Tokyo 69:570–577CrossRefGoogle Scholar
  111. Ishibashi M, Terashima I (1995) Effects of continuous leaf wetness on photosynthesis – Adverse aspects of rainfall. Plant Cell Environ 18:431–438CrossRefGoogle Scholar
  112. Ivanova LA, Petrov MS, Kadushnikov RM (2006) Determination of mesophyll diffusion resistance in Chamaerion angustifolium by the method of three-dimensional reconstruction of the leaf cell packing. Russ J Plant Physiol 53:316–324CrossRefGoogle Scholar
  113. Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011) Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiol 155:1416–1424PubMedPubMedCentralCrossRefGoogle Scholar
  114. Joel DM, Gepstein S (1985) Chloroplasts in the epidermis of Sarracenia (the American pitcher plant) and their possible role in carnivory – an immunocytochemical approach. Physiol Plant 63:71–75CrossRefGoogle Scholar
  115. Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258CrossRefGoogle Scholar
  116. Jones HD (1983) Plants and Microclimate. Cambridge University Press, CambridgeGoogle Scholar
  117. Jurik TW, Chabot JF, Chabot BF (1979) Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol 63:542–547PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kamaluddin M, Grace J (1992) Photoinhibition and light acclimation in seedlings of Bischofia javanica, a tropical forest tree from Asia. Ann Bot 69:47–52CrossRefGoogle Scholar
  119. Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Topics Develop Biol 91:29–66CrossRefGoogle Scholar
  120. Kaplan DR (1975) Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot Jahrb Syst 95:1–105Google Scholar
  121. Karabourniotis G, Bornman JF, Nikolopoulos D (2000) A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ 23:423–430CrossRefGoogle Scholar
  122. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  123. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832PubMedCrossRefPubMedCentralGoogle Scholar
  124. Kevekordes KG, McCully ME, Canny MJ (1988) The occurrence of an extended bundle sheath system (paraveinal mesophyll) in the legumes. Can J Bot 66:94–100CrossRefGoogle Scholar
  125. Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, . . . Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356—360PubMedCrossRefGoogle Scholar
  126. Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24:529–538CrossRefGoogle Scholar
  127. Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2015) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8:480–492CrossRefGoogle Scholar
  128. Krauss P, Markstadter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085CrossRefGoogle Scholar
  129. Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New YorkCrossRefGoogle Scholar
  130. Leadley PW, Reynolds JA, Thomas JF, Reynolds JF (1987) Effects of CO2 enrichment on internal leaf surface area in soybeans. Bot Gaz 148:137–140CrossRefGoogle Scholar
  131. Leegood RC (2008) Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot 59:1663–1673PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, ... Fleming AJ (2017) Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant J 92: 981—994Google Scholar
  133. Leigh A, Sevanto S, Ball MC, Close JD, Ellsworth DS, Knight CA et al (2012) Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol 194:477–487PubMedCrossRefGoogle Scholar
  134. Lersten NR (1997) Occurrence of endodermis with a casparian strip in stem and leaf. Bot Rev 63:265–272CrossRefGoogle Scholar
  135. Levin DA (1973) The role of trichomes in plant defense. Quart Rev Biol 48:3–15CrossRefGoogle Scholar
  136. Li WD, Hu X, Liu JK, Jiang GM, Li O, Xing D (2011) Chromosome doubling can increase heat tolerance in Lonicera japonica as indicated by chlorophyll fluorescence imaging. Biol Plant 55:279–284CrossRefGoogle Scholar
  137. Liakopoulos G, Nikolopoulos D, Klouvatou A, Vekkos KA, Manetas Y, Karabourniotis G (2006) The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann Bot 98:257–265PubMedPubMedCentralCrossRefGoogle Scholar
  138. Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190PubMedCrossRefGoogle Scholar
  139. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  140. Lucas PW, Choong MF, Tan HTW, Turner IM, Berrick AJ (1991) The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L. (Guttiferae). Philos Trans Roy Soc London B Biol Sci 334:95–106CrossRefGoogle Scholar
  141. Lundgren MR, Osborne CP, Christin PA (2014) Deconstructing Kranz anatomy to understand C4 evolution. J Exp Bot 65:3357–3369PubMedCrossRefGoogle Scholar
  142. March RH, Clark LG (2011) Sun-shade variation in bamboo (Poaceae: Bambusoideae) leaves. Telopea 13:93–104CrossRefGoogle Scholar
  143. Martin JT, Juniper BE (1970) The cuticles of plants. Arnold, LondonGoogle Scholar
  144. Martin G, Josserand SA, Bornman JF, Vogelmann TC (1989) Epidermal focusing and the light microenvironment within leaves of Medicago sativa. Physiol Plant 76:485–492CrossRefGoogle Scholar
  145. Mashayekhi S, Columbus JT (2014) Evolution of leaf blade anatomy in Allium (Amaryllidaceae) subgenus Amerallium with a focus on the North American species. Am J Bot 101:63–85PubMedCrossRefPubMedCentralGoogle Scholar
  146. McCree KJ (1972) Action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216CrossRefGoogle Scholar
  147. Medina E, Sobrado M, Herrera R (1978) Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Rad Environ Biophys 15:131–140CrossRefGoogle Scholar
  148. Metcalfe CR (1956) Some thoughts on the structure of bamboo leaves. Shokubutsugaku Zasshi 69:391–400CrossRefGoogle Scholar
  149. Metcalfe CR (1979) Ecological anatomy and morphology general survey. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 1, 2nd edn. Clarendon Press, Oxford, pp 126–152Google Scholar
  150. Metcalfe CR, Chalk L (eds) (1950) Anatomy of the dicotyledons, vol 1 & 2. Clarendon Press, OxfordGoogle Scholar
  151. Michaletz ST, Weiser MD, McDowell NG, Zhou J, Kaspari M, Helliker BR, Enquist BJ (2016) The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2:16129PubMedCrossRefPubMedCentralGoogle Scholar
  152. Milthorpe FL, Newton P (1963) Studies on the expansion of the leaf surface. III. The influence of radiation on cell division and leaf expansion. J Exp Bot 14:483–495CrossRefGoogle Scholar
  153. Möglich A, Yang X, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47PubMedCrossRefGoogle Scholar
  154. Mommer L, Pons TL, Visser EJW (2006) Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study. J Exp Bot 57:283–290PubMedCrossRefGoogle Scholar
  155. Monteith JL, Unsworth MH (2013) Principles of environmental physics, 4th edn. Academic, MassachusettsGoogle Scholar
  156. Morison JI, Lawson T (2007) Does lateral gas diffusion in leaves matter? Plant Cell Environ 30:1072–1085PubMedCrossRefGoogle Scholar
  157. Morison JI, Gallouet E, Lawson T, Cornic G, Herbin R, Baker NR (2005) Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol 139:254–266PubMedPubMedCentralCrossRefGoogle Scholar
  158. Mott KA, Gibson AC, Oleary JW (1982) The adaptive significance of amphistomatic leaves. Plant Cell Environ 5:455–460CrossRefGoogle Scholar
  159. Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Amer J Bot 94:362–381CrossRefGoogle Scholar
  160. Muir CD (2015) Making pore choices: repeated regime shifts in stomatal ratio. Proc Roy Soc B Biol Sci 282:20151498CrossRefGoogle Scholar
  161. Muir CD (2018) Light and growth form interact to shape stomatal ratio among British angiosperms. New Phytol 218:242–252  https://doi.org/10.1111/nph.14956 PubMedCrossRefGoogle Scholar
  162. Muir CD, Hangarter RP, Moyle LC, Davis PA (2014) Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum, sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell Environ 37:1415–1426PubMedCrossRefGoogle Scholar
  163. Muller O, Oguchi R, Hirose T, Werger MJA, Hikosaka K (2009) The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. Physiol Plant 136:299–309PubMedCrossRefGoogle Scholar
  164. Munekage YN, Inoue S, Yoneda Y, Yokota A (2015) Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana. Plant Cell Environ 38:1116–1126PubMedCrossRefGoogle Scholar
  165. Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448CrossRefGoogle Scholar
  166. Nakashima Y, Kamiya S (2007) Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data. J Nuc Sci Technol 44:1233–1247CrossRefGoogle Scholar
  167. Nakata M, Okada K (2013) The leaf adaxial-abaxial boundary and lamina growth. Plants 2:174–202PubMedPubMedCentralCrossRefGoogle Scholar
  168. Nasrulhaqboyce A, Duckett JG (1991) Dimorphic epidermal cell chloroplasts in the mesophyll-less leaves of an extreme-shade tropical fern, Teratophyllum rotundifoliatum (R Bonap) Holtt – a light and electron-microscope study. New Phytol 119:433–444CrossRefGoogle Scholar
  169. Neger FW (1912) Spaltöffnungsschluß und künstliche Turgorsteigerung. Ber Deut Bot Ges 30:179–194Google Scholar
  170. Neger FW (1918) Die Wegsamkeit der Laubblätter für Gase. Flora 111:152–161Google Scholar
  171. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677CrossRefGoogle Scholar
  172. Niinemets Ü, Fleck S (2002) Leaf biomechanics and biomass investment in support in relation to long-term irradiance in Fagus. Plant Biol 4:523–534CrossRefGoogle Scholar
  173. Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: a sensitivity analysis. J Geophys Res Atmos 108:4211CrossRefGoogle Scholar
  174. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, ChicagoGoogle Scholar
  175. Nikolopoulos D, Liakopoulos G, Drossopoulos I, Karabourniotis G (2002) The relationship between anatomy and photosynthetic performance of heterobaric leaves. Plant Physiol 129:235–243PubMedPubMedCentralCrossRefGoogle Scholar
  176. Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5:953–961PubMedPubMedCentralCrossRefGoogle Scholar
  177. Nobel PS (2009) Physicochemical and environmental plant physiology. Academic, New YorkGoogle Scholar
  178. Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512CrossRefGoogle Scholar
  179. Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927CrossRefGoogle Scholar
  180. Oguchi R, Hikosaka K, Hiura T, Hirose T (2006) Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 149:571–582PubMedCrossRefGoogle Scholar
  181. Oguchi R, Hiura T, Hikosaka K (2017) The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest. Tree Physiol 37:1113–1127PubMedCrossRefGoogle Scholar
  182. Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228PubMedCrossRefGoogle Scholar
  183. Ohtsuka A, Sack L, Taneda H (2018) Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant Cell Environ 41:342–353PubMedCrossRefGoogle Scholar
  184. Okajima Y, Taneda H, Noguchi K, Terashima I (2011) Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol Res 27:333–346CrossRefGoogle Scholar
  185. Onoda Y, Schieving F, Anten NPR (2008) Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann Bot 101:727–736PubMedPubMedCentralCrossRefGoogle Scholar
  186. Onoda Y, Westoby M, Adler PB, Choong AM, Clissold FJ, Cornelissen JH et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312PubMedCrossRefPubMedCentralGoogle Scholar
  187. Onoda Y, Richards L, Westoby M (2012) The importance of leaf cuticle for carbon economy and mechanical strength. New Phytol 196:441–447PubMedCrossRefPubMedCentralGoogle Scholar
  188. Onoda Y, Salunga JB, Akutsu K, Aiba S, Yahara T, Anten NPR (2014) Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. J Ecol 102:167–175CrossRefGoogle Scholar
  189. Onoda Y, Schieving F, Anten NP (2015) A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species. J Exp Bot 66:2487–2499PubMedPubMedCentralCrossRefGoogle Scholar
  190. Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü et al (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214:1447–1463PubMedCrossRefPubMedCentralGoogle Scholar
  191. Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  192. Parkhurst DF (1977) A three-dimensional model for CO2 uptake by continuously distributed mesophyll in leaves. J Theor Biol 67:471–488PubMedCrossRefPubMedCentralGoogle Scholar
  193. Parkhurst DF (1978) Adaptive significance of stomatal occurrence on one or both surfaces of leaves. J Ecol 66:367–383CrossRefGoogle Scholar
  194. Parkhurst DF (1994) Diffusion of CO2 and other gases inside leaves. New Phytol 126:449–479CrossRefGoogle Scholar
  195. Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537CrossRefGoogle Scholar
  196. Parkhurst DF, Mott KA (1990) Intercellular diffusion limits to CO2 uptake in leaves. Plant Physiol 94:1024–1032PubMedPubMedCentralCrossRefGoogle Scholar
  197. Pearcy RW, Seemann JR (1990) Photosynthetic induction state of leaves in a soybean canopy in relation to light regulation of ribulose-1-5-bisphosphate carboxylase and stomatal conductance. Plant Physiol 94:628–633PubMedPubMedCentralCrossRefGoogle Scholar
  198. Pearcy RW, Sims DA (1994) Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above and below ground. Academic, San Diego, pp 145–174CrossRefGoogle Scholar
  199. Peguero-Pina JJ, Flexas J, Galmés J, Niinemets U, Sancho-Knapik D, Barredo G, . . . Gil-Pelegrín E (2012) Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ 35: 2121—2129PubMedCrossRefGoogle Scholar
  200. Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A, Niinemets Ü et al (2017) Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytol 214:585–596PubMedCrossRefGoogle Scholar
  201. Pérez-Estrada LB, Cano-Santana Z, Oyama K (2000) Variation in leaf trichomes of Wigandia urens: environmental factors and physiological consequences. Tree Physiol 20:629–632PubMedCrossRefGoogle Scholar
  202. Pickup M, Westoby M, Basden A (2005) Dry mass costs of deploying leaf area in relation to leaf size. Funct Ecol 19:88–97CrossRefGoogle Scholar
  203. Piel C (2002) Diffusion du CO2 dans le mésophylle des plantes à métabolisme C3. PhD thesis, Université Paris XI Orsay, Paris, FranceGoogle Scholar
  204. Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53:2423–2430PubMedCrossRefPubMedCentralGoogle Scholar
  205. Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817PubMedCrossRefGoogle Scholar
  206. Pino M-T, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406PubMedCrossRefGoogle Scholar
  207. Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74:581–594CrossRefGoogle Scholar
  208. Pons TL, Poorter H (2014) The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance. Front Plant Sci 5:12PubMedPubMedCentralCrossRefGoogle Scholar
  209. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588PubMedCrossRefGoogle Scholar
  210. Pospíšilová J, Solárová J (1980) Environmental and biological control of diffusive conductances of adaxial and abaxial leaf epidermis. Photosynthetica 14:90–127Google Scholar
  211. Prado K, Boursiac Y, Tournaire-Roux C, Monneuse J-M, Postaire O, Da Ines O et al (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25:1029–1039PubMedPubMedCentralCrossRefGoogle Scholar
  212. Pyankov VI, Kondratchuk AV, Shipley B (1999) Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol 143:131–142CrossRefGoogle Scholar
  213. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207CrossRefGoogle Scholar
  214. Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93:1546–1565PubMedCrossRefGoogle Scholar
  215. Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and function of leaf venation architecture: a review. Ann Bot 87:553–566CrossRefGoogle Scholar
  216. Roth-Nebelsick A, Hassiotou F, Veneklaas EJ (2009) Stomatal crypts have small effects on transpiration: A numerical model analysis. Plant Physiol 151:2018–2027PubMedPubMedCentralCrossRefGoogle Scholar
  217. Roy B, Stanton M, Eppley S (1999) Effects of environmental stress on leaf hair density and consequences for selection. J Evol Biol 12:1089–1103CrossRefGoogle Scholar
  218. Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232CrossRefGoogle Scholar
  219. Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87:483–491PubMedCrossRefGoogle Scholar
  220. Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381CrossRefGoogle Scholar
  221. Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356CrossRefGoogle Scholar
  222. Sack L, Scoffoni C, Johnson DM, Buckley TN, Brodribb TJ (2015) The anatomical determinants of leaf hydraulic function. In: Hacke U (ed) Functional and ecological xylem anatomy. Springer, Zürich, pp 255–271Google Scholar
  223. Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106PubMedPubMedCentralCrossRefGoogle Scholar
  224. Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50: 756—772PubMedCrossRefGoogle Scholar
  225. Sakai W, Sanford W (1980) Ultrastructure of the water-absorbing trichomes of pineapple (Ananas comosus, Bromeliaceae). Ann Bot 46:7–11CrossRefGoogle Scholar
  226. Sakurai N, Domoto K, Takagi S (2005) Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea. Planta 221:66–74PubMedCrossRefGoogle Scholar
  227. Salem-Fnayou AB, Bouamama B, Ghorbel A, Mliki A (2011) Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera) under heat stress. Microsc Res Techniq 74:756–762CrossRefGoogle Scholar
  228. Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186PubMedCrossRefGoogle Scholar
  229. Sancho-Knapik D, Gomez Álvarez-Arenas T, Javier Peguero-Pina J, Fernández V, Gil-Pelegrín E (2011) Relationship between ultrasonic properties and structural changes in the mesophyll during leaf dehydration. J Exp Bot 62:3637–3645PubMedCrossRefGoogle Scholar
  230. Sanson G (2006) The biomechanics of browsing and grazing. Am J Bot 93:1531–1545PubMedCrossRefGoogle Scholar
  231. Schmitt AK, Martin CE, Lüttge UE (1989) Gas exchange and water vapor uptake in the atmospheric CAM bromeliad Tillandsia recurvata L.: The influence of trichomes. Bot Acta 102:80–84CrossRefGoogle Scholar
  232. Schymanski SJ, Or D, Zwieniecki M (2013) Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. Plos One 8:e54231PubMedPubMedCentralCrossRefGoogle Scholar
  233. Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. J Exp Bot 55:99–109PubMedCrossRefGoogle Scholar
  234. Scoffoni C, Pou A, Aasamaa K, Sack L (2008) The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ 31:1803–1812PubMedCrossRefGoogle Scholar
  235. Scoffoni C, Vuong C, Diep S, Cochard H, Sack L (2014) Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiol 164:1772–1788PubMedCrossRefGoogle Scholar
  236. Secchi F, Zwieniecki MA (2014) Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism. Plant Physiol 164:1789–1799PubMedPubMedCentralCrossRefGoogle Scholar
  237. Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. Comp R Biol 331:587–596CrossRefGoogle Scholar
  238. Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67:72–80PubMedCrossRefGoogle Scholar
  239. Sheue CR, Sarafis V, Kiew R, Liu HY, Salino A, Kuo-Huang LL, . . . Ku MSB (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Am J Bot 94: 1922—1929PubMedCrossRefGoogle Scholar
  240. Sheue CR, Pao SH, Chien LF, Chesson P, Peng C-I (2012) Natural foliar variegation without costs? The case of Begonia. Ann Bot 109:1065–1074PubMedPubMedCentralCrossRefGoogle Scholar
  241. Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447CrossRefGoogle Scholar
  242. Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247PubMedCrossRefPubMedCentralGoogle Scholar
  243. Sims DA, Pearcy RW (1992) Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot 79:449–455CrossRefGoogle Scholar
  244. Skelton RP, Midgley JJ, Nyaga JM, Johnson SD, Cramer MD (2012) Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? Aust J Bot 60:104–113CrossRefGoogle Scholar
  245. Skene DS (1974) Chloroplast structure in mature apple leaves grown under different levels of illumination and their response to changed illumination. Proc Roy Soc B Biol Sci 186:75–78CrossRefGoogle Scholar
  246. Slaton MR, Smith WK (2002) Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and forest species. Intl J Plant Sci 163:937–948CrossRefGoogle Scholar
  247. Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407:585–591PubMedCrossRefGoogle Scholar
  248. Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf form and photosynthesis. Bioscience 47:785–793CrossRefGoogle Scholar
  249. Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y et al (2014) Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants. Plant Cell Environ 37:2587–2600CrossRefGoogle Scholar
  250. Stessman D, Miller A, Spalding M, Rodermel S (2002) Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth Res 72:27–37PubMedCrossRefGoogle Scholar
  251. Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW III (2016) Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. Plant Cell Environ 39:1549–1558PubMedCrossRefPubMedCentralGoogle Scholar
  252. Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157CrossRefGoogle Scholar
  253. Sztatelman O, Waloszek A, Banas AK, Gabrys H (2010) Photoprotective function of chloroplast avoidance movement: In vivo chlorophyll fluorescence study. J Plant Physiol 167:709–716PubMedCrossRefPubMedCentralGoogle Scholar
  254. Takahashi K, Mineuchi K, Nakamura T, Koizumi M, Kano H (1994) A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. Plant Cell Environ 17:105–110CrossRefGoogle Scholar
  255. Taneda H, Kandel DR, Ishida A, Ikeda H (2016) Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal. Tree Physiol 36:1272–1282PubMedCrossRefGoogle Scholar
  256. Terashima I (1992) Anatomy of nonuniform leaf photosynthesis. Photosynth Res 31:195–212PubMedCrossRefGoogle Scholar
  257. Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128CrossRefGoogle Scholar
  258. Terashima I, Inoue Y (1984) Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L – functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant Cell Physiol 25:555–563Google Scholar
  259. Terashima I, Inoue Y (1985) Vertical gradient in photosynthetic properties of spinach-chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol 26:781–785CrossRefGoogle Scholar
  260. Terashima I, Saeki T (1983) Light environment within a leaf I. Optical properties of paradermal sections of camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24:1493–1501CrossRefGoogle Scholar
  261. Terashima I, Ishibashi M, Ono K, Hikosaka K (1995) Three resistances to CO2 diffusion: leaf-surface water, intercellular spaces and mesophyll cells. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 537–542Google Scholar
  262. Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105CrossRefGoogle Scholar
  263. Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354PubMedCrossRefPubMedCentralGoogle Scholar
  264. Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697CrossRefGoogle Scholar
  265. Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116PubMedCrossRefPubMedCentralGoogle Scholar
  266. Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700PubMedCrossRefPubMedCentralGoogle Scholar
  267. Tholen D, Boom C, Zhu X-G (2012a) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101PubMedCrossRefPubMedCentralGoogle Scholar
  268. Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012b) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103PubMedCrossRefPubMedCentralGoogle Scholar
  269. Tjaden B, Cooper SJ, Brett DJ, Kramer D, Shearing PR (2016) On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr Opin Chem Engineer 12:44–51CrossRefGoogle Scholar
  270. Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, . . . Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64: 2269—2281PubMedPubMedCentralCrossRefGoogle Scholar
  271. Tomás M, Medrano H, Brugnoli E, Escalona JM, Martorell S, Pou A et al (2014) Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Aust J Grape Wine Res 20:272–280CrossRefGoogle Scholar
  272. Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M et al (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590PubMedCrossRefPubMedCentralGoogle Scholar
  273. Tyree MT, Hammel HT (1972) Measurement of turgor pressure and water relations of plants by pressure-bomb technique. J Exp Bot 23:267–282CrossRefGoogle Scholar
  274. Vincent JFV (1982) The mechanical design of grass. J Mater Sci 17:856–860CrossRefGoogle Scholar
  275. Vitousek PM, Aplet G, Turner D, Lockwood JJ (1992) The Mauna Loa environmental matrix: foliar and soil nutrients. Oecologia 89:372–382PubMedCrossRefGoogle Scholar
  276. Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183:13–26PubMedCrossRefGoogle Scholar
  277. Vogelmann TC (1993) Plant-tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251CrossRefGoogle Scholar
  278. Vogelmann TC (1994) Light within the plant. In: Kendrick RE, Kronenberg GHM (eds) Photomorophogenesis in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 491–535CrossRefGoogle Scholar
  279. Vogelmann TC, Björn LO (1984) Measurement of light gradients and spectral regime in plant tissue with a fiber optic probe. Physiol Plant 60:361–368CrossRefGoogle Scholar
  280. Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323CrossRefGoogle Scholar
  281. Vogelmann TC, Martin G (1993) The functional significance of palisade tissue – penetration of directional versus diffuse light. Plant Cell Environ 16:65–72CrossRefGoogle Scholar
  282. Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70CrossRefGoogle Scholar
  283. Voigt D, Gorb E, Gorb S (2007) Plant surface-bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interact 1:221–243CrossRefGoogle Scholar
  284. Vyas P, Bisht MS, Miyazawa S, Yano S, Noguchi K, Terashima I, Funayama-Noguchi S (2007) Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Funct Plant Biol 34:673–682CrossRefGoogle Scholar
  285. Wada M (2013) Chloroplast movement. Plant Sci 210:177–182PubMedCrossRefGoogle Scholar
  286. Wagner P, Furstner R, Barthlott W, Neinhuis C (2003) Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot 54:1295–1303PubMedCrossRefGoogle Scholar
  287. Wagner G, Wang E, Shepherd R (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11PubMedPubMedCentralCrossRefGoogle Scholar
  288. Wang Y, Noguchi K, Terashima I (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ 31:1307–1316PubMedCrossRefGoogle Scholar
  289. Wang R, Huang W, Chen L, Ma L, Guo C, Liu X (2011) Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in Northeast China. PLoS One 6:e26209PubMedPubMedCentralCrossRefGoogle Scholar
  290. Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487PubMedCrossRefGoogle Scholar
  291. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35CrossRefGoogle Scholar
  292. Wiedemann P, Neinhuis C (1998) Biomechanics of isolated plant cuticles. Bot Acta 111:28–34CrossRefGoogle Scholar
  293. Wilkinson HP (1979) The plant surface (mainly leaf). In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 1, 2nd edn. Claredon Press, Oxford, pp 97–165Google Scholar
  294. Wilson GL (1966) Studies on the expansion of the leaf surface. V. Cell division and expansion in a developing leaf as influenced by light and upper leaves. J Exp Bot 17:440–451CrossRefGoogle Scholar
  295. Wilson J (1984) Microscopic features of wind damage to leaves of Acer pseudoplatanus L. Ann Bot 53:73–82CrossRefGoogle Scholar
  296. Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47:656–662PubMedPubMedCentralCrossRefGoogle Scholar
  297. Wright W, Illius AW (1995) A comparative study of the fracture properties of 5 grasses. Funct Ecol 9:269–278CrossRefGoogle Scholar
  298. Wright W, Vincent JFV (1996) Herbivory and the mechanics of fracture in plants. Biol Rev Cambridge Philos Soc 71:401–413CrossRefGoogle Scholar
  299. Wright IJ, Reich PB, Westoby M (2003) Least-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111PubMedGoogle Scholar
  300. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827PubMedCrossRefPubMedCentralGoogle Scholar
  301. Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S et al (2017) Global climatic drivers of leaf size. Science 357:917–921PubMedCrossRefGoogle Scholar
  302. Wylie RB (1952) The bundle sheath extension in leaves of dicotyledons. Am J Bot 39:645–651CrossRefGoogle Scholar
  303. Xiao Y, Tholen D, Zhu XG (2016) The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model. J Exp Bot 67:6021–6035PubMedPubMedCentralCrossRefGoogle Scholar
  304. Xiong DL, Yu TT, Zhang T, Li Y, Peng SB, Huang JL (2015) Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J Exp Bot 66:741–748PubMedCrossRefGoogle Scholar
  305. Yamaguchi T, Yano S, Tsukaya H (2010) Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell 22:2141–2155PubMedPubMedCentralCrossRefGoogle Scholar
  306. Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol 42:1303–1310PubMedCrossRefGoogle Scholar
  307. Zhang Y-L, Zhang H-Z, Du M-W, Li W, Luo H-H, Chow W-S, Zhang W-F (2010) Leaf wilting movement can protect water-stressed cotton (Gossypium hirsutum L.) plants against photoinhibition of photosynthesis and maintain carbon assimilation in the field. J Plant Biol 53:52–60CrossRefGoogle Scholar
  308. Zsögön A, Negrini ACA, Peres LEP, Nguyen HT, Ball MC (2015) A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). New Phytolog 205:618–626CrossRefGoogle Scholar
  309. Zurzycki J (1955) The dependence of photosynthesis on the arrangement of chloroplasts. Experientia 11:263PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Riichi Oguchi
    • 1
    Email author
  • Yusuke Onoda
    • 2
  • Ichiro Terashima
    • 3
  • Danny Tholen
    • 4
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Graduate School of AgricultureKyoto UniversityKyotoJapan
  3. 3.Graduate School of ScienceThe University of TokyoTokyoJapan
  4. 4.Institute of Botany, Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Applied Life Sciences (BOKU) ViennaViennaAustria

Personalised recommendations