Skip to main content

Hematologic Advances in Trauma Resuscitation

  • Chapter
  • First Online:
  • 641 Accesses

Abstract

A significant hematologic challenge in trauma patients is the treatment of hemorrhage and hemorrhagic shock. Trauma patients with major hemorrhage have a 25% mortality in the most recent studies. Hemorrhagic shock is the leading cause of preventable mortality in both military and civilian trauma. Trauma-induced coagulopathy occurs early after injury and results in increased hemorrhage and increased mortality. We have a greater understanding of the mechanisms underlying trauma-induced coagulopathy, with hypoperfusion and increased injury severity inducing protein C activation and hyperfibrinolysis. Both hyperfibrinolysis and fibrinolysis shutdown are associated with increased mortality in trauma. We have achieved significant advances in trauma resuscitation, with the use of guideline-based recommendations for damage control resuscitation using early fixed-ratio 1:1:1 or 1:1:2 blood component ratios, early prompt hemorrhage control, massive transfusion protocols, and viscoelastic testing to guide further trauma resuscitation. We still have significant challenges related to which patients benefit from tranexamic acid administration and the need for additional studies to gain full mechanistic understanding of trauma-induced coagulopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ATLS® for Doctors Student Manual with DVD. 9th ed. American College of Surgeons. 2012. http://www.facs.org/trauma/atls/index.html.

  2. Inaba K, Teixeira PG, Shulman I, et al. The impact of uncross-matched blood transfusion on the need for massive transfusion and mortality: analysis of 5,166 uncross-matched units. J Trauma. 2008;65(6):1222–6.

    Article  Google Scholar 

  3. Repine TB, Perkins JG, Kauvar DS, et al. The use of fresh whole blood in MT. J Trauma. 2006;60:S59–69.

    Article  Google Scholar 

  4. Sihler KC, Napolitano LM. Massive transfusion: new insights. Chest. 2009;136(6):1654–67.

    Article  Google Scholar 

  5. Sihler KC, Napolitano LM. Complications of massive transfusion. Chest. 2010;137(1):209–20.

    Article  Google Scholar 

  6. Cotton BA, Dossett LA, Haut ER, et al. Multicenter validation of a simplified score to predict massive transfusion in trauma. J Trauma. 2010;69(suppl 1):S33–9.

    Article  Google Scholar 

  7. Nunez TC, Voskresensky IV, Dossett LA, et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66(2):346–52.

    Article  Google Scholar 

  8. Maegele M, Lefering R, Wafaisade A, Trauma Registry of the Deutsche Gesellschaft fur Unfallchirurgie (TR-DGU), et al. Revalidation and update of the TASH score: a scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang. 2011;100(2):231–8.

    Article  CAS  Google Scholar 

  9. Schreiber MA, Perkins J, Kiraly L, et al. Early predictors of massive transfusion in combat casualties. J Am Coll Surg. 2007;205:541–5.

    Article  Google Scholar 

  10. Mahambrey TD, Fowler RA, Pinto R, et al. Early massive transfusion in trauma patients: Canadian single-centre retrospective cohort study. Can J Anaesth. 2009;56(10):740–50.

    Article  Google Scholar 

  11. Tran A, Matar M, Lampron J, Steyerberg E, Taljaard M, Vaillancourt C. Early identification of patients requiring massive transfusion, embolization or hemostatic surgery for traumatic hemorrhage: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2018 Mar;84(3):505–16.

    Article  Google Scholar 

  12. Como JJ, Dutton RP, Scalea TM, et al. Blood transfusion rates in the care of acute trauma. Transfusion. 2004;44:809–13.

    Article  Google Scholar 

  13. Vaslef SN, Knudsen NW, Neligan PJ, et al. Massive transfusion exceeding 50 units of blood products in trauma patients. J Trauma. 2002;53:291–6.

    Article  Google Scholar 

  14. US Army Institute of Surgical Research. Joint theater trauma system clinical practice guideline: damage control resuscitation at level IIb and III treatment facilities. 2017. http://www.usaisr.amedd.army.mil/cpgs/DamageControlResuscitation_03Feb2017.pdf; http://www.usaisr.amedd.army.mil.proxy.lib.umich.edu/assets/cpgs/Damage%20Control%20Resuscitation%20-%201%20Feb%202013.pdf.

  15. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    Article  Google Scholar 

  16. Simmons JW, White CE, Eastridge BJ, Mace JE, Wade CE, Blackbourne LH. Impact of policy change on US Army combat transfusion practices. J Trauma. 2010;69(suppl 1):S75–80.

    Article  Google Scholar 

  17. Gonzalez EA, Moore FA, Holcomb JB, et al. Fresh frozen plasma should be given earlier to patients requiring MT. J Trauma. 2007;62:112–9.

    Article  Google Scholar 

  18. Duchesne JC, Hunt JP, Wahl G, et al. Review of current blood transfusion strategies in a mature level 1 trauma center: were we wrong for the last 60 years? J Trauma. 2008;65(2):272–6.

    Article  Google Scholar 

  19. Sperry JL, Ochoa JB, Gunn SR, Inflammation the Host Response to Injury Investigators, et al. An FfP:PRBC transfusion ratio >/= 1:1.5 is associated with lower risk of mortality after MT. J Trauma. 2008;65(5):986–93.

    Article  Google Scholar 

  20. Maegele M, Lefering R, Paffrath T, Working Group on polytrauma of the German Society of Trauma Surgery (DGU), et al. Red blood cell to plasma ratios transfused during MT are associated with mortality in severe multiple injury: a retrospective analysis from the Trauma Registry of the Deutsche Gesellschaft fur Unfallchirurgie. Vox Sang. 2008;95:112–9.

    Article  CAS  Google Scholar 

  21. Spinella PC, Cap AP. Whole blood: back to the future. Curr Opin Hematol. 2016;23:536–42.

    Article  Google Scholar 

  22. Holcomb JB, Wade CE, Michalek JE, Chisholm GB, Zarzabal LA, Schreiber MA, Gonzalez EA, Pomper GJ, Perkins JG, Spinella PC, Williams KL, Park MS. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008 Sep;248(3):447–58.

    PubMed  Google Scholar 

  23. Shaz BH, Dente CJ, Nicholas J, et al. Increased number of coagulation products in relationship to red blood cell products transfused improves mortality in trauma patients. Transfusion. 2010;50(2):493–500.

    Article  CAS  Google Scholar 

  24. Cotton BA, Reddy N, Hatch QM, et al. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254(4):598–605.

    Article  Google Scholar 

  25. Holcomb JB, del Junco DJ, Fox EE, PROMMTT Study Group, et al. The Prospective, Observational, Multicenter, Major Trauma Transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36.

    Article  Google Scholar 

  26. Johansson PI, Sørensen AM, Larsen CF, et al. Low hemorrhage-related mortality in trauma patients in a level I trauma center employing transfusion packages and early thromboelastography-directed hemostatic resuscitation with plasma and platelets. Transfusion. 2013;53(12):3088–99.

    Article  CAS  Google Scholar 

  27. Langan NR, Eckert M, Martin MJ. Changing patterns of in-hospital deaths following implementation of damage control resuscitation practices in US forward military treatment facilities. JAMA Surg. 2014;149(9):904–12.

    Article  Google Scholar 

  28. Scalea TM, Bochicchio KM, Lumpkins K, et al. Early aggressive use of fresh frozen plasma does not improve outcome in critically injured trauma patients. Ann Surg. 2008;248(4):578–84.

    PubMed  Google Scholar 

  29. Johnson JL, Moore EE, Kashuk JL, et al. Effect of blood products transfusion on the development of postinjury multiple organ failure. Arch Surg. 2010;145(10):973–7.

    Article  Google Scholar 

  30. Holcomb JB, Hoyt D, Hess JR. Damage control resuscitation: the need for specific blood products to treat the coagulopathy of trauma. Transfusion. 2006;46:685–6.

    Article  Google Scholar 

  31. Johansson PI, Stensballe J. Hemostatic resuscitation for massive bleeding: the paradigm of plasma and platelets––a review of the current literature. Transfusion. 2010;50(3):701–10.

    Article  Google Scholar 

  32. Murad MH, Stubbs JR, Gandhi MJ, et al. The effect of plasma transfusion on morbidity and mortality: a systematic review and meta-analysis. Transfusion. 2010;50(6):1370–83.

    Article  Google Scholar 

  33. Roback JD, Caldwell S, Carson J, American Association for the Study of Liver; American Academy of Pediatrics; United States Army; American Society of Anesthesiology; American Society of Hematology, et al. Evidence-based practice guidelines for plasma transfusion. Transfusion. 2010;50(6):1227–39.

    Article  Google Scholar 

  34. Khan H, Belsher J, Yilmaz M, et al. Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. Chest. 2007;131:1308–14.

    Article  Google Scholar 

  35. Gajic O, Yilmaz M, Iscimen R, et al. Transfusion from male-only versus female donors in critically ill recipients of high plasma volume components. Crit Care Med. 2007;35:1645–8.

    Article  Google Scholar 

  36. Netzer G, Shas CV, Iwashyna TJ, et al. Association of RBC transfusion with mortality in patients with acute lung injury. Chest. 2007;132:1116–23.

    Article  Google Scholar 

  37. Toy P, Popovsky MA, Abraham E, National Heart, Lung and Blood Institute Working Group on TRALI, et al. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33:721–6.

    Article  Google Scholar 

  38. Gajic E, Rana R, Winters JL, et al. Transfusion-related acute lung injury in the critically ill: prospective nested case-control study. Am J Respir Crit Care Med. 2007;176:886–91.

    Article  Google Scholar 

  39. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93.

    Article  CAS  Google Scholar 

  40. Park PK, Cannon JW, Ye W, Blackbourne LH, Holcomb JB, Beninati W, Napolitano LM. Transfusion strategies and development of acute respiratory distress syndrome in combat casualty care. J Trauma Acute Care Surg. 2013 Aug;75(2 Suppl 2):S238–46.

    Article  Google Scholar 

  41. Holcomb JB, del Juncio DJ, Fox EE, et al. The prospective observational multicenter major trauma transfusion (PROMMTT) study. Comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013 Feb;148(2):127–36.

    Article  Google Scholar 

  42. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets and red blood cells in a 1:1:1 vs. a 1:1:2 ratio and mortality in patients with severe trauma. The PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    Article  CAS  Google Scholar 

  43. Robinson BRH, Cohen MJ, Holcomb JB, Pritts TA, Gomaa D, Fox EE, Branson RD, Callcut RA, Cotton BA, Schreiber MA, Brasel KJ, Pittet JF, Inaba K, Kerby JD, Scalea TM, Wade CE, Bulger EM, PROPPR Study Group. Risk factors for the development of acute respiratory distress syndrome following hemorrhage. Shock. 2017 Nov 30. https://doi.org/10.1097/SHK.0000000000001073. [Epub ahead of print]

    Article  Google Scholar 

  44. Fox EE, Holcomb JB, Wade CE, et al. Earlier endpoints are required for hemorrhagic shock trials among severely injured patients. Shock. 2017;47(5):567–73.

    Article  Google Scholar 

  45. http://www.usaisr.amedd.army.mil/cpgs/DamageControlResuscitation_03Feb2017.pdf

  46. Cannon JW, Khan MA, Raja AS, Cohen MJ, Como JJ, Cotton BA, Dubose JJ, Fox EE, Inaba K, Rodriguez CJ, Holcomb JB, Duchesne JC. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2017 Mar;82(3):605–17.

    Article  Google Scholar 

  47. https://www.facs.org/~/media/files/quality%20programs/trauma/tqip/massive%20transfusion%20in%20trauma%20guildelines.ashx

  48. McQuilten ZK, Crighton G, Brunskill S, Morison JK, Richter TH, Waters N, Murphy MF, Wood EM. Optimal dose, timing and ratio of blood products in massive transfusion: results from a systematic review. Transfus Med Rev. 2018 Jan;32(1):6–15.

    Article  Google Scholar 

  49. Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331:1105–9.

    Article  CAS  Google Scholar 

  50. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002 Jun;52(6):1141–6.

    Article  Google Scholar 

  51. Napolitano LM. Resuscitation endpoints in trauma. Transfus Altern Transfus Med. 2005;6(4):6–14.

    Article  Google Scholar 

  52. Moore EE. Thomas G. Orr memorial lecture. Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome. Am J Surg. 1996;172:405–10.

    Article  CAS  Google Scholar 

  53. Cosgriff N, Moore EE, Sauaia A, et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidosis revisited. J Trauma. 1997;42:857–61.

    Article  CAS  Google Scholar 

  54. McKinley BA, Gonzalez EA, Balldin BC, et al. Revisiting the “bloody vicious cycle”. Shock. 2004;21(suppl 2):47.

    Article  Google Scholar 

  55. Chang R, Cardenas JC, Wade CE, Holcomb JB. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016 Aug 25;128(8):1043–9.

    Article  CAS  Google Scholar 

  56. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007 May;245(5):812–8.

    Article  Google Scholar 

  57. Jansen JO, Scarpelini S, Pinto R, Tien HC, Callum J, Rizoli SB. Hypoperfusion in severely injured trauma patients is associated with reduced coagulation factor activity. J Trauma. 2011 Nov;71(5 Suppl 1):S435–40.

    Article  CAS  Google Scholar 

  58. Cohen MJ, Call M, Nelson M, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85.

    Article  Google Scholar 

  59. Cohen MJ, Kutcher M, Redick B, PROMMTT Study Group, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 suppl 1):S40–7.

    Article  CAS  Google Scholar 

  60. Gonzalez E, Moore EE, Moore HB. Management of trauma-induced coagulopathy with thrombelastography. Crit Care Clin. 2017 Jan;33(1):119–34. Review.

    Article  Google Scholar 

  61. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, Sauaia A, Cotton BA. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016 Apr;222(4):347–55.

    Article  Google Scholar 

  62. Etchill E, Sperry J, Zuckerbraun B, Alarcon L, Brown J, Schuster K, Kaplan L, Piper G, Peitzman A, Neal MD. The confusion continues: results from an American Association for the Surgery of Trauma survey on massive transfusion practices among United States trauma centers. Transfusion. 2016 Oct;56(10):2478–86.

    Article  CAS  Google Scholar 

  63. Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A, Wohlauer MV, Barnett CC, Bensard DD, Biffl WL, Burlew CC, Johnson JL, Pieracci FM, Jurkovich GJ, Banerjee A, Silliman CC, Sauaia A. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016 Jun;263(6):1051–9.

    Article  Google Scholar 

  64. Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64(5):1211–7. discussion 1217

    Article  Google Scholar 

  65. Frith D, Goslings JC, Gaarder C, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8(9):1919–25.

    Article  CAS  Google Scholar 

  66. Hess JR, Brohi K, Dutton RP, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65:748–54.

    Article  CAS  Google Scholar 

  67. Meizoso JP, Karcutskie CA, Ray JJ, Namias N, Schulman CI, Proctor KG. Persistent fibrinolysis shutdown is associated with increased mortality in severely injured trauma patients. J Am Coll Surg. 2017 Apr;224(4):575–82.

    Article  Google Scholar 

  68. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.

    Article  CAS  Google Scholar 

  69. Napolitano LM, Cohen MJ, Cotton BA, et al. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74:1575–86.

    Article  Google Scholar 

  70. Valle EJ, Allen CJ, Van Haren RM, Jouria JM, Li H, Livingstone AS, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76:1373–8.

    Article  CAS  Google Scholar 

  71. Harvin JA, Peirce CA, Mims MM, Hudson JA, Podbielski JM, Wade CE, et al. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78:905–9. discussion 909–11

    Article  Google Scholar 

  72. Cole E, Davenport R, Willett K, Brohi K. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study. Ann Surg. 2015;261:390–4.

    Article  Google Scholar 

  73. Boutonnet M, Abback P, Le Saché F, Harrois A, Follin A, Imbert N, Cap AP, Trichereau J, Ausset S, The Traumabase Group. Tranexamic acid in severe trauma patients managed in a mature trauma care system. J Trauma Acute Care Surg. 2018 Jun;84(6S Suppl 1):S54–62. https://doi.org/10.1097/TA.0000000000001880.

    Article  CAS  PubMed  Google Scholar 

  74. Napolitano LM. Prehospital tranexamic acid: what is the current evidence? Trauma Surg Acute Care Open. 2017;2:1–7. https://doi.org/10.1136/tsaco-2016-000056.

    Article  Google Scholar 

  75. West MA, Shapiro MB, Nathens AB, et al. Guidelines for transfusion in the trauma patient. Inflammation and host response to injury, a large-scale collaborative project: patient-oriented research core––standard operating procedures for clinical care. J Trauma. 2006;61:436–9.

    Article  Google Scholar 

  76. Hébert PC, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17. Erratum in: N Engl J Med. 1999;340(13):1056

    Article  Google Scholar 

  77. Napolitano LM, Kurek S, Luchette FA, American College of Critical Care Medicine of the Society of Critical Care Medicine; Eastern Association for the Surgery of Trauma Practice Management Workgroup, et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. Crit Care Med. 2009;37(12):3124–57. Erratum in: Crit Care Med. 2010;38(7):1621

    Article  Google Scholar 

  78. Napolitano LM, Kurek S, Luchette FA, EAST Practice Management Workgroup; American College of Critical Care Medicine (ACCM) Taskforce of the Society of Critical Care Medicine (SCCM), et al. Clinical practice guideline: red blood cell transfusion in adult trauma and critical care. J Trauma. 2009;67(6):1439–42.

    Article  Google Scholar 

  79. Napolitano LM. Anemia and red blood cell transfusion: advances in critical care. Crit Care Clin. 2017 Apr;33(2):345–64.

    Article  Google Scholar 

  80. Carson JL, Guyatt G, Heddle NM, et al. Clinical Practice Guidelines from the American Association of Blood Banks (AABB) on RBC Transfusion Thresholds and Storage. JAMA. 2016;316(19):2025–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena M. Napolitano MD, FACS, FCCP, MCCM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Napolitano, L.M. (2018). Hematologic Advances in Trauma Resuscitation. In: Shander, A., Corwin, H. (eds) Hematologic Challenges in the Critically Ill. Springer, Cham. https://doi.org/10.1007/978-3-319-93572-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93572-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93571-3

  • Online ISBN: 978-3-319-93572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics