Skip to main content

Evolution of Chordate Cardiopharyngeal Muscles and the Origin of Vertebrate Head Muscles

  • Chapter
  • First Online:
  • 1445 Accesses

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Recent findings that urochordates are the closest sister group of vertebrates have dramatically changed our understanding of chordate evolution and of the origin of the vertebrate head and its muscles. To better understand the evolution and diversity of chordates, in particular the morphological and taxonomical diversity of the vertebrates, it is crucial to investigate the origin, development, and comparative anatomy of not only hard tissues but also of soft tissues such as muscles. Building on the recent discovery of the cardiopharyngeal field in urochordates and on the comparative anatomy of chordate and vertebrate muscles, in this chapter we focus on the broader comparative and developmental anatomy of chordate muscles and the origin of vertebrate cephalic muscles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ang S-L, Conlon RA, Jin O, Rossant J (1994) Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120:2979–2989

    CAS  PubMed  Google Scholar 

  • Bone Q (1960) The central nervous system in amphioxus. J Comp Neurol 115:27–64

    Article  Google Scholar 

  • Cameron CB (2002) The anatomy, life habits, and later development of a new species of enteropneust, Harrimania planktophilus (Hemichordata: Harrimaniidae) from Barkley Sound. Biol Bull 202:182–191

    Article  PubMed  Google Scholar 

  • Candiani S (2012) Focus on miRNAs evolution: a perspective from amphioxus. Brief Funct Genomics 11(2):107–117. https://doi.org/10.1093/bfgp/els004

    Article  CAS  PubMed  Google Scholar 

  • Caron J-B, Morris SC, Cameron CB (2013) Tubicolous enteropneusts from the Cambrian period. Nature 495:503–506

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. J Murray, London

    Book  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Dennell R (1950) Note on the Feeding of Amphioxus (Branchiostoma bermudœ). P Roy Soc Edinb B 64:229–234

    Google Scholar 

  • Diogo R, Abdala V (2010) Muscles of vertebrates—comparative anatomy, evolution, homologies and development. CRC Press; Science Publisher, Enfield, New Hampshire

    Google Scholar 

  • Diogo R, Tanaka EM (2014) Development of fore-and hindlimb muscles in GFP-transgenic axolotls: Morphogenesis, the tetrapod bauplan, and new insights on the Forelimb-Hindlimb Enigma. J Exp Zool Part B 322:106–127

    Article  Google Scholar 

  • Diogo R, Ziermann JM (2014) Development of fore- and hindlimb muscles in frogs: Morphogenesis, homeotic transformations, digit reduction, and the forelimb-hindlimb enigma. J Exp Zool Part B 322B:86–105

    Article  Google Scholar 

  • Diogo R, Ziermann JM (2015) Development, metamorphosis, morphology, and diversity: The evolution of chordate muscles and the origin of vertebrates. Dev Dyn 244:1046–1057

    Article  PubMed  Google Scholar 

  • Diogo R, Linde-Medina M, Abdala V, Ashley-Ross MA (2013) New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biol Rev 88:196–214

    Article  PubMed  Google Scholar 

  • Diogo R, Kelly RG, Christiaen L et al (2015) A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge at the University Press, London

    Google Scholar 

  • Flood PR (1966) A peculiar mode of muscular innervation in amphioxus. Light and electron microscopic studies of the so-called ventral roots. J Comp Neurol 126:181–217

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Northcutt RG (1993) Cranial and spinal nerve organization in Amphioxus and Lampreys: Evidence for an ancestral craniate pattern. Cells Tissues Organs 148:96–109

    Article  CAS  Google Scholar 

  • Gans C (1989) Stages in the origin of vertebrates: Analysis by means of scenarios. Biol Rev 64:221–268

    Article  CAS  PubMed  Google Scholar 

  • Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–274

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gen cluster. Nature 370:563–566

    Article  PubMed  Google Scholar 

  • Garstang W (1928) Memoirs: The morphology of Tunicata, and its bearing on the phylogeny of the Chordata. Q J Micro Sci 2:51–187

    Google Scholar 

  • Gegenbaur C (1878) Elements of comparative anatomy. Macmillan and Company, New York

    Google Scholar 

  • Gill T (1895) The lowest of the vertebrates and their origin. Science:645–649

    Google Scholar 

  • Gillis JA, Dahn RD, Shubin NH (2009) Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. PNAS 106:5720–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis JA, Fritzenwanker JH, Lowe CJ (2012) A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc Roy Soc London B 279:237–246

    Article  Google Scholar 

  • Gopalakrishnan S, Comai G, Sambasivan R et al (2015) A cranial mesoderm origin for esophagus striated muscles. Dev Cell 34:694–704

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Shimeld SM (2013) The origin and evolution of the ectodermal placodes. J Anat 222:32–40

    Article  PubMed  Google Scholar 

  • Gregory WK (1935) On the evolution of the skulls of vertebrates with special reference to heritable changes in proportional diameters (anisomerism). PNAS 21:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BK, Gillis JA (2013) Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 222:19–31

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ (2015) Genomics, evolution and development of amphioxus and tunicates: the goldilocks principle. J Exp Zool Part B 324:342–352

    Article  CAS  Google Scholar 

  • Holland LZ, Holland ND (1998) Developmental gene expression in amphioxus: new insights into the evolutionary origin of vertebrate brain regions, neural crest, and rostrocaudal segmentation. Am Zool 38:647–658

    Article  CAS  Google Scholar 

  • Holland LZ, Holland ND (2001) Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J Anat 199:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R (2003) AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255:128–137

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, Holland ND, Gilland E (2008) Amphioxus and the evolution of head segmentation. Integr Comp Biol 48:630–646

    Article  PubMed  Google Scholar 

  • Holland ND, Holland LZ, Holland PW (2015) Scenarios for the making of vertebrates. Nature 520:450–455

    Article  CAS  PubMed  Google Scholar 

  • Holmes W (1953) The atrial nervous system of amphioxus (Branchiostoma). Q J Micro Sci 3:523–535

    Google Scholar 

  • Kaji T, Aizawa S, Uemura M, Yasui K (2001) Establishment of left-right asymmetric innervation in the lancelet oral region. J Comp Neurol 435:394–405

    Article  CAS  PubMed  Google Scholar 

  • Kaji T, Keiji S, Artinger KB, Yasui K (2009) Dynamic modification of oral innervation during metamorphosis in Branchiostoma belcheri, the oriental lancelet. Biol Bull 217:151–160

    Article  PubMed  Google Scholar 

  • Kaplan N, Razy-Krajka F, Christiaen L (2015) Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr Opin Genet Dev 32:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight RD, Mebus K, d'Angelo A et al (2011) Ret signalling integrates a craniofacial muscle module during development. Development 138:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242

    PubMed  Google Scholar 

  • Koop D, Holland LZ (2008) The basal chordate amphioxus as a simple model for elucidating developmental mechanisms in vertebrates. Birth Def Res C Embryo Today 84:175–187

    Article  CAS  Google Scholar 

  • Koop D, Chen J, Theodosiou M et al (2014) Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. EvoDevo 5:1

    Article  CAS  Google Scholar 

  • Kuratani S (1997) Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head. Anat Embryol 195:1–13

    Article  CAS  Google Scholar 

  • Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F (2013) Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 222:41–55

    Article  PubMed  Google Scholar 

  • Kusakabe R, Kuraku S, Kuratani S (2011) Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev Biol 350:217–227

    Article  CAS  PubMed  Google Scholar 

  • Lescroart F, Kelly RG, Le Garrec J-F et al (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279

    Article  CAS  PubMed  Google Scholar 

  • Lescroart F, Hamou W, Francou A et al (2015) Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium. PNAS 112:1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe CJ, Clarke DN, Medeiros DM, Rokhsar DS, Gerhart J (2015) The deuterostome context of chordate origins. Nature 520:456–465

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie S, Walsh FS, Graham A (1998) Migration of hypoglossal myoblast precursors. Dev Dyn 213:349–358

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan NR, Horton AC, Gibson-Brown JJ (2004) Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev Genes Evol 214:559–566

    Article  CAS  PubMed  Google Scholar 

  • Mallatt J (2008) The origin of the vertebrate jaw: neoclassical ideas versus newer, development-based ideas. Zoo Sci 25:990–998

    Article  Google Scholar 

  • Mallatt J, Chen JY (2003) Fossil sister group of craniates: predicted and found. J Morph 258:1–31

    Article  PubMed  Google Scholar 

  • Marinelli W, Strenger A (1954) Vergleichende Anatomie und Morphologie der Wirbeltiere: von W. Marinelli und A. Strenger. Lampetra fluviatilis (L.). Franz Deuticke, Austria. 80

    Google Scholar 

  • Matsuoka T, Ahlberg PE, Kessaris N et al (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minchin JE, Williams VC, Hinits Y et al (2013) Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development 140:2972–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minot CS (1897) Cephalic homologies. A contribution to the determination of the ancestry of vertebrates. Am Nat 31:927–943

    Article  Google Scholar 

  • Moreno TR, Rocha RM (2008) Phylogeny of the Aplousobranchia (Tunicata: Ascidiacea). Rev Brasil Zool 25:269–298

    Article  Google Scholar 

  • Niederreither K, Vermot J, Le Roux I et al (2003) The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130:2525–2534

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1986) Patterning of avian craniofacial muscles. Dev Biol 116:347–356

    Article  CAS  PubMed  Google Scholar 

  • Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218

    Article  CAS  PubMed  Google Scholar 

  • Noden DM, Schneider RA (2006) Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. In: Saint-Jeannet J (ed) Neural crest induction and differentiation. Landes Bioscience, San Francisco, pp 1–31

    Google Scholar 

  • Northcutt RG (2005) The new head hypothesis revisited. J Exp Zool Part B 304:274–297

    Article  Google Scholar 

  • Oisi Y, Fujimoto S, Ota KG, Kuratani S (2015) On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. Zool Lett 1:1

    Article  Google Scholar 

  • Piekarski N, Olsson L (2007) Muscular derivatives of the cranialmost somites revealed by long-term fate mapping in the Mexican axolotl (Ambystoma mexicanum). Evol Dev 9:566–578

    Article  PubMed  Google Scholar 

  • Piotrowski T, Nüsslein-Volhard C (2000) The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 225:339–356

    Article  CAS  PubMed  Google Scholar 

  • Presley R, Horder T, Slipka J (1996) Lancelet development as evidence of ancestral chordate structure. Israel J Zool 42:S97–S116

    Google Scholar 

  • Prunotto C, Crepaldi T, Forni PE et al (2004) Analysis of Mlc-lacZ Met mutants highlights the essential function of Met for migratory precursors of hypaxial muscles and reveals a role for Met in the development of hyoid arch-derived facial muscles. Dev Dyn 231:582–591

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Razy-Krajka F, Lam K, Wang W et al (2014) Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 29:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415

    Article  CAS  PubMed  Google Scholar 

  • Sasakura Y, Kanda M, Ikeda T et al (2012) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160

    Article  CAS  PubMed  Google Scholar 

  • Sauka-Spengler T, Le Mentec C, Lepage M, Mazan S (2002) Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetra fluviatilis. GEP 2:99–103

    CAS  PubMed  Google Scholar 

  • Schubert M, Yu J-K, Holland ND et al (2005) Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132:61–73

    Article  CAS  PubMed  Google Scholar 

  • Shearman RM, Burke AC (2009) The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool Part B 312:603–612

    Article  Google Scholar 

  • Shimeld SM, Holland PW (2000) Vertebrate innovations. PNAS 97:4449–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simões-Costa MS, Vasconcelos M, Sampaio AC et al (2005) The evolutionary origin of cardiac chambers. Dev Biol 277:1–15

    Article  PubMed  CAS  Google Scholar 

  • Stokes M, Holland N (1995) Ciliary hovering in larval lancelets (= Amphioxus). Biol Bull 188:231–233

    Article  CAS  PubMed  Google Scholar 

  • Stolfi A, Gainous TB, Young JJ et al (2010) Early chordate origins of the vertebrate second heart field. Science 329:565–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953

    Article  CAS  PubMed  Google Scholar 

  • Tzahor E (2009) Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol 327:273–279

    Article  CAS  PubMed  Google Scholar 

  • Valentine JW (2004) On the origin of phyla. University of Chicago Press, Chicago

    Google Scholar 

  • Wendling O, Dennefeld C, Chambon P, Mark M (2000) Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127:1553–1562

    CAS  PubMed  Google Scholar 

  • Willey A (1894) Amphioxus and the ancestry of the vertebrates. MacMillan & Co., New York

    Book  Google Scholar 

  • Yasui K, Kaji T, Morov AR, Yonemura S (2014) Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J Morph 275:465–477

    Article  PubMed  Google Scholar 

  • Yoshida K, Nakahata A, Treen N et al (2017) Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 44(9):1629–1634. https://doi.org/10.1242/dev.144436

    Article  CAS  Google Scholar 

  • Zhu M, Yu X, Ahlberg PE et al (2013) A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188–193

    Article  CAS  PubMed  Google Scholar 

  • Ziermann JM, Diogo R (2013) Cranial muscle development in the model organism Ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny. Anat Rec 296:1031–1048

    Article  Google Scholar 

  • Ziermann JM, Diogo R (2014) Cranial muscle development in frogs with different developmental modes: direct development vs. biphasic development. J Morph 275:398–413

    Article  PubMed  Google Scholar 

  • Ziermann JM, Miyashita T, Diogo R (2014) Cephalic muscles of cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Lin Soc 172:771–802

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the other members of the First International Meeting on the Evolutionary Developmental Biology of Head-Heart Muscles held in May 2014 at Howard University and in particular among them Michael Levine, Eldad Tzahor, Robert Kelly, Lionel Christiaen, Julia Molnar, and Drew Noden who collaborated with us in the Nature paper that was published as a result of that meeting, and that is a key basis for the present chapter. We are also thankful to numerous other colleagues that have discussed with us subjects related to the issues included in this chapter. Our gratitude goes furthermore to Peter Johnston and Virginia Abdala for reviewing the current chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Diogo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ziermann, J.M., Diogo, R. (2019). Evolution of Chordate Cardiopharyngeal Muscles and the Origin of Vertebrate Head Muscles. In: Ziermann, J., Diaz Jr, R., Diogo, R. (eds) Heads, Jaws, and Muscles. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93560-7_1

Download citation

Publish with us

Policies and ethics