Advertisement

Fog Computing Based Energy Management System Model for Smart Buildings

  • Saman Zahoor
  • Nadeem JavaidEmail author
  • Adia Khalid
  • Anila Yasmeen
  • Zunaira Nadeem
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 773)

Abstract

In this article, a three layered architecture is proposed for smart buildings. A fog based infrastructure is designed and deployed on the edge of network, where fog processes the private data collected through the smart meters and stores the public data on cloud. Further, end user has facility to schedule and control the home appliances by using a centralized energy management system. Moreover, the electricity and network resources utilization charges can be calculated. We analyze the performance of cloud based centralized system, considering the fog computing as an intermittent layer between system user layer and cloud layer and without considering fog computing. Simulation results prove that fog layer enhances the efficient utilization of network resources and also reduces the bottleneck on the cloud computing.

Keywords

Smart grid Smart building Fog computing and Cloud computing 

References

  1. 1.
    Rahimi, F., Ipakchi, A.: Demand response as a market resource under the smart grid paradigm. IEEE Trans. Smart Grid 1(1), 82–88 (2010)CrossRefGoogle Scholar
  2. 2.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)Google Scholar
  3. 3.
    Hong, K., Lillethun, D., Ramachandran, U., Ottenwalder, B., Koldehofe, B.: Mobile fog: a programming model for large-scale applications on the Internet of Things. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, pp. 15–20. ACM (2013)Google Scholar
  4. 4.
    Zhu, J., Chan, D., Prabhu, M.M.S., Natarajan, P., Hu, H.: Improving web sites performance using edge servers in fog computing architecture. U.S. Patent Application 13/904,327, filed, 15 May 2014 (2014)Google Scholar
  5. 5.
    Pourbabak, H., Chen, T., Zhang, B., Su, W.: Control and energy management system in microgrids. arXiv preprint arXiv:1705.10196 (2017)
  6. 6.
    Olivares, D.E., Canizares, C.A., Kazerani, M.: A centralized energy management system for isolated microgrids. IEEE Trans. Smart Grid 5(4), 1864–1875 (2014)CrossRefGoogle Scholar
  7. 7.
    Tushar, M.H.K., Assi, C., Maier, M., Uddin, M.F.: Smart microgrids: optimal joint scheduling for electric vehicles and home appliances. IEEE Trans. Smart Grid 5(1), 239–250 (2014)CrossRefGoogle Scholar
  8. 8.
    Yue, J., Zhijian, H., Li, C., Vasquez, J.C., Guerrero, J.M.: Economic power schedule and transactive energy through an intelligent centralized energy management system for a DC residential distribution system. Energies 10(7), 916 (2017)CrossRefGoogle Scholar
  9. 9.
    Al Faruque, M.A., Vatanparvar, K.: Energy management-as-a-service over fog computing platform. IEEE Internet of Things J. 3(2), 161–169 (2016)CrossRefGoogle Scholar
  10. 10.
    Markovic, D.S., Zivkovic, D., Branovic, I., Popovic, R., Cvetkovic, D.: Smart power grid and cloud computing. Renew. Sustain. Energy Rev. 24, 566–577 (2013)CrossRefGoogle Scholar
  11. 11.
    Fang, X., Yang, D., Xue, G.: Evolving smart grid information management cloudward: A cloud optimization perspective. IEEE Trans. Smart Grid 4(1), 111–119 (2013)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Huang, J., Lin, X., Mohsenian-Rad, H.: Exploring smart grid and data center interactions for electric power load balancing. ACM SIGMETRICS Perform. Eval. Rev. 41(3), 89–94 (2014)CrossRefGoogle Scholar
  13. 13.
    Sheikhi, A., Rayati, M., Bahrami, S., Ranjbar, A.M., Sattari, S.: A cloud computing framework on demand side management game in smart energy hubs. Int. J. Electric. Power Energy Syst. 64, 1007–1016 (2015)CrossRefGoogle Scholar
  14. 14.
    Cao, Z., Lin, J., Wan, C., Song, Y., Zhang, Y., Wang, X.: Optimal cloud computing resource allocation for demand side management in smart grid. IEEE Trans. Smart Grid 8(4), 1943–1955 (2017)Google Scholar
  15. 15.
    Thakare, M.Y.A., Deshmukh, M.P.P., Meshram, M.R.A., Hole, M.K.R., Gulhane, M.R.A., Deshmukh, M.N.A.: A Review: The Internet of Things Using Fog Computing (2017)Google Scholar
  16. 16.
    Shahryari, K., Anvari-Moghaddam, A.: Demand Side Management Using the Internet of Energy based on Fog and Cloud ComputingGoogle Scholar
  17. 17.
    Barik, R.K., Gudey, S.K., Reddy, G.G., Pant, M., Dubey, H., Mankodiya, K., Kumar, V.: FogGrid: leveraging fog computing for enhanced smart grid network arXiv preprint arXiv:1712.09645 (2017)
  18. 18.
    Okay, F.Y., Ozdemir, S.: A fog computing based smart grid model. In: 2016 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Saman Zahoor
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Adia Khalid
    • 1
  • Anila Yasmeen
    • 1
  • Zunaira Nadeem
    • 2
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.National University of Science and TechnologyIslamabadPakistan

Personalised recommendations