Foged Energy Optimization in Smart Homes

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 773)


In this paper, Smart Grid (SG) efficiency is improved by introducing Cloud-based environment. To access the services and hostage of cloud large number of requests are entertained from Smart Homes (SHs). These SHs exists in clusters of smart buildings. When the number of requests increase, delay, latency and response time also increase. To overcome these issues, Fog is introduced, which act as an intermediate layer between the cloud and consumer. Five Micro Grids (MGs) are attached to each cluster of the smart building to manage its requests. By using Fog base environment, the delay and latency decreases. The response time also increases with less processing time. To handle the load on cloud different load balancing algorithms and service broker policies exist. In order to manage the load, Honey Bee (HB) is implemented. HB is compared with existing algorithm Round Robin (RR). It gives better results than RR.


Fog Smart Homes Load balancing Service Broker Policy Round Robin Honey Bee 


  1. 1.
    Moghaddam, M.H.Y., Leon-Garcia, A., Moghaddassian, M.: On the performance of distributed and cloud-based demand response in smart grid. IEEE Trans. Smart Grid 1–15 (2017)Google Scholar
  2. 2.
    Okay, F.Y., Ozdemir, S.: A fog computing based smart grid model. In: International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6. IEEE (2016)Google Scholar
  3. 3.
    Fatima, I., Javaid, N., Iqbal, M.N., Shafi, I., Anjum, A., Memon, U.: Integration of cloud and fog based environment for effective resource distribution in smart buildings. In: 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC-2018), pp. 2–6 (2018)Google Scholar
  4. 4.
    Milani, A.S., Navimipour, N.J.: Load balancing mechanisms and techniques in the cloud environments: systematic literature review and future trends. J. Netw. Comput. Appl. 71, 86–98 (2016)CrossRefGoogle Scholar
  5. 5.
    Chen, S.L., Chen, Y.-Y., Kuo, S.-H.: CLB: a novel load balancing architecture and algorithm for cloud services. Comput. Electr. Eng. 58, 154–160 (2017)CrossRefGoogle Scholar
  6. 6.
    Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manag. 25(1), 122–158 (2017)CrossRefGoogle Scholar
  7. 7.
    Manasrah, A.M., Smadi, T., ALmomani, A.: A variable service broker routing policy for data center selection in cloud analyst. J. King Saud Univ. Comput. Inf. Sci. 29(3), 365–377 (2017)Google Scholar
  8. 8.
    Radi, M.: Efficient service broker policy for large-scale cloud environments. arXiv preprint arXiv:1503.03460 (2015)
  9. 9.
    Al Sukhni, E.: K-nearest-neighbor-based service broker policy for data center selection in cloud computing environment. Int. Res. J. Electron. Comput. Eng. 2(3), 5–9 (2016)Google Scholar
  10. 10.
    Yasmeen, A., Javaid, N., Iftkhar, H., Rehman, O., Malik, M.F.: Efficient resource provisioning for smart buildings utilizing fog and cloud based environment. In: 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC-2018), pp. 1–6 (2018)Google Scholar
  11. 11.
    Javaid, S., Javaid, N., Tayyaba, S., Sattar, N.A., Ruqia, B., Zahid, M.: Resource allocation using Fog-2-Cloud based environment for smart buildings. In: 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC-2018), pp. 1–6 (2018)Google Scholar
  12. 12.
    Wickremasinghe, B., Buyya, R.: CloudAnalyst: a CloudSim-based tool for modelling and analysis of large scale cloud computing environments. MEDC Proj. Rep. 22(6), 433–659 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.International Islamic UniversityIslamabadPakistan

Personalised recommendations