Advertisement

Climate-Smart Groundnuts for Achieving High Productivity and Improved Quality: Current Status, Challenges, and Opportunities

  • Sunil S. Gangurde
  • Rakesh Kumar
  • Arun K. Pandey
  • Mark Burow
  • Haydee E. Laza
  • Spurthi N. Nayak
  • Baozhu Guo
  • Boshou Liao
  • Ramesh S. Bhat
  • Naga Madhuri
  • S. Hemalatha
  • Hari K. Sudini
  • Pasupuleti Janila
  • Putta Latha
  • Hasan Khan
  • Babu N. Motagi
  • T. Radhakrishnan
  • Naveen Puppala
  • Rajeev K. VarshneyEmail author
  • Manish K. PandeyEmail author
Chapter

Abstract

About 90% of total groundnut is cultivated in the semi-arid tropic (SAT) regions of the world as a major oilseed and food crop and provides essential nutrients required by human diet. Climate change is the main threat to yield and quality of the produce in the SAT regions, and effects are already being seen in some temperate areas also. Rising CO2 levels, erratic rainfall, humidity, short episodes of high temperature and salinity hamper the physiology, disease resistance, fertility and yield as well as seed nutrient levels of groundnut. To meet growing demands of the increasing population against the threats of climate change, it is necessary to develop climate-smart varieties with enhanced and stable genetic improvements. Identifying key traits affected by climate change in groundnut will be important for developing an appropriate strategy for developing new varieties. Fast-changing scenarios of product ecologies as a consequence of climate change need faster development and replacement of improved varieties in the farmers’ fields to sustain yield and quality. Use of modern genomics technology is likely to help in improved understanding and efficient breeding for climate-smart traits such as tolerance to drought and heat, and biotic stresses such as foliar diseases, stem rot, peanut bud necrosis disease, and preharvest aflatoxin contamination. The novel promising technologies such as genomic selection and genome editing need to be tested for their potential utility in developing climate-smart groundnut varieties. System modeling may further improve the understanding and characterization of the problems of target ecologies for devising strategies to overcome the problem. The combination of conventional breeding techniques with genomics and system modeling approaches will lead to a new era of system biology assisted breeding for sustainable agricultural production to feed the ever-growing population.

Keywords

Climate-smart crop Groundnut Biotic and abiotic stress Genomics-assisted breeding Genetic and association mapping Wild relatives 

Notes

Acknowledgements

The authors are thankful to Indian Council of Agricultural Research (ICAR)- National Agricultural Science Funds (NASF), Department of Biotechnology (DBT), Science and Engineering Research Board (SERB) and INSPIRE of Department of Science and Technology (DST), India; Bill & Melinda Gates Foundation (Tropical Legumes III) and MARS WRIGLEY, USA and World Bank assisted Karnataka Watershed Development Project-II (KWDP-II) funded by Government of Karnataka (GoK), India, and USDA-NIFA (Hatch) funding for financial assistance. The work reported in this article was undertaken as a part of the CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC). ICRISAT is a member of the CGIAR.

Competing financial interests

The author(s) declare no competing financial interests.

References

  1. Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE et al (2009) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401–417PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y et al (2018) High-density genetic map using whole-genome re-sequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16(11):1954–1967PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ajeigbe HA, Waliyar F, Echekwu CA, Ayuba K, Motagi BN et al (2015) A Farmer’s guide to groundnut production in Nigeria. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India, p 28Google Scholar
  4. Anderson WG, Holbrook CC, Culbreath AK (1996) Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61CrossRefGoogle Scholar
  5. Akbar A, Manohar SS, Variath TV, Kurapati S, Pasupuleti J (2017) Efficient partitioning of assimilates in stress-tolerant groundnut genotypes under high-temperature stress. Agronomy 7:30CrossRefGoogle Scholar
  6. Asif MA, Zafar Y, Iqbal J, Iqba MM, Rashid U et al (2011) Enhanced expression of AtHX1, in transgenic ground nut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49:250–256PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bannayan M, Soler CM, Garcia AG, Guerra LC, Hoogenboom G (2009) Interactive effects of elevated (CO2) and temperature on growth and development of a short- and long-season peanut cultivar. Clim Change 93:389–406CrossRefGoogle Scholar
  8. Barrs HD, Weatherly PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Austral J Biol Sci 15:413–428CrossRefGoogle Scholar
  9. Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC et al (2005) The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24:543–553PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belamkar V, Selvaraj MG, Ayers JL, Payton PR, Puppala N et al (2011) A first insight into population structure and linkage disequilibrium in the US peanut minicore collection. Genetica 139:411–429PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bell MJ, Shorter R, Mayer R (1991) Cultivar and environmental effects on growth and development of peanuts (Arachis hypogaea L). 1. Emergence and flowering. Field Crops Res 27:17–33CrossRefGoogle Scholar
  12. Benedict CR, Ketring DL (1972) Nuclear gene affecting greening in virescent peanut leaves. Plant Physiol 49:974–976Google Scholar
  13. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 4:438–446CrossRefGoogle Scholar
  14. Beyer JR, Fridovich I (1987) Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal Biochem 161:559–566PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bhagat NR, Dayal D, Acharya D (1992) Performance of Spanish peanuts during winter-summer season at two locations in India. Trop Agri (Trinidad) 69:93–95Google Scholar
  16. Bhagsari AS, Brown RH (1976) Photosynthesis in peanut (Arachis) genotypes. Peanut Sci 3:1–5CrossRefGoogle Scholar
  17. Bhakal M, Lal GM (2015) Studies on genetic diversity in groundnut (Arachis hypogaea L.) germplasm. J Plant Sci Res 2(2):1–4Google Scholar
  18. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V et al (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082PubMedCrossRefGoogle Scholar
  19. Bhauso TD, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR et al (2014) Over-expression of bacterial mtlD gene confers enhanced tolerance to salt-stress and water-deficit stress in transgenic peanut (Arachis hypogaea) through accumulation of mannitol. Austral J Crop Sci 8:413–421Google Scholar
  20. Bishnoi NR, Krishnamoorthy HN (1992) Effect of waterlogging and gibberellic acid on leaf gas exchange in peanut (Arachis hypogaea L.). Plant Physiol 139:503–505CrossRefGoogle Scholar
  21. Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47CrossRefGoogle Scholar
  22. Booker FL, Burkey KO, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: I. gas-exchange, biomass, and leaf chemistry. Crop Sci 47:1475CrossRefGoogle Scholar
  23. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52PubMedCrossRefGoogle Scholar
  24. Branch WD (1994) Registration of ‘Georgia Brown’ peanut. Crop Sci 34:1125–1126CrossRefGoogle Scholar
  25. Brar GS, Cohen BA, Vick CL, Grant W, Johnson GW (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J 5:745–753CrossRefGoogle Scholar
  26. Brasileiro AC, Guerra Araujo AC, Leal-Bertioli SC, Guimaraes PM (2014) Genomics and genetic transformation in Arachis. Int J Plant Biol Res 2(3):1017Google Scholar
  27. Burke JJ (1994) Integration of acquired thermotolerance within the developmental program of seed reserve mobilization. In: Cherry JH (ed) Biochemical and cellular mechanisms of stress tolerance in plants. Springer, Berlin, pp 191–200CrossRefGoogle Scholar
  28. Burke JJ (2001) Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol Plant 112:167–170CrossRefGoogle Scholar
  29. Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed Yield Qual Crop Sci 47:1488Google Scholar
  30. Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837PubMedPubMedCentralGoogle Scholar
  31. Burow MD, Leal-Bertioli SC, Simpson CE, Ozias-Akins P, Chu Y, et al. (2013) Marker-assisted selection for biotic stress resistance in peanut. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, volume I: biotic stresses, 1st edn. Wiley, New York, pp 125–150 (Chapter 13)CrossRefGoogle Scholar
  32. Burow MD, Starr JL, Park C, Simpson CE, Paterson AH (2014a) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol Breed 34(2):393–406CrossRefGoogle Scholar
  33. Burow MD, Simpson CE, Starr JL, Park CH, Paterson AH (2011) QTL analysis of early leaf spot resistance and agronomic traits in an introgression population of peanut. In: Advances in Arachis genomics and biotechnology—fifth international conference, A09, Brasilia, BrazilGoogle Scholar
  34. Burow MD, Simpson CE, Paterson AH, Starr JL (1996) Identification of peanut (Arachis hypogaea) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2:307–319CrossRefGoogle Scholar
  35. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson AH (2009) Molecular biogeographic study of recently-described B-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119PubMedCrossRefPubMedCentralGoogle Scholar
  36. Burow MD, Baringb MR, Ayers JL, Schubert AM, López Y et al (2014b) Registration of Tamrun OL12’ Peanut. J Plant Regist 8:117–121CrossRefGoogle Scholar
  37. Callaway E (2018) EU law deals blow to CRISPER crops. Nature 560:16PubMedCrossRefPubMedCentralGoogle Scholar
  38. Calkins JB, Swanson BT (1990) The distinction between living and dead plant tissue - Viability tests in cold hardiness research. Cryobiology 27:194–211CrossRefGoogle Scholar
  39. Cavanagh C, Morell M, Mackay IJ, Powell W (2008) From mutations to MAGIC; resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chen W, Jiao Y, Cheng L, Huang L, Liao B, et al (2016a) Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.) BMC Genetics 17:25Google Scholar
  41. Chen X, Li H, Pandey MK, Yang Q, Wang X et al (2016b) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci USA 113(24):6785–6790PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cheng M, Jarret RL, Li Z, Xing A, Demski JW (1997) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657CrossRefGoogle Scholar
  43. Chopra R, Burow G, Simpson CE, Chagoya J, Mudge J, et al (2016) Transcriptome sequencing of diverse peanut (Arachis) wild species and the cultivated species reveals a wealth of untapped genetic variability. G3 Genes Genom Genet 6:3825–38360Google Scholar
  44. Chopra R, Simpson CE, Hillhouse A, Payton P, Sharma J, et al (2018) SNP genotyping reveals major QTLs for plant architectural traits between A genome wild species. Mol Gen Genom, 293(6):1477–1491Google Scholar
  45. Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S et al (2008) Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. J Agri Food Chem 56(23):11225–11233CrossRefGoogle Scholar
  46. Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49:2029–2036CrossRefGoogle Scholar
  47. Chu Y, Ramos L, Holbrook CC, Ozias-Akins P (2007) Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the US peanut germplasm collection. Crop Sci 47:2372–2378CrossRefGoogle Scholar
  48. Chu YY, Wu CL, Holbrook CC, Tillman BL, Person G et al (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117CrossRefGoogle Scholar
  49. Clevenger J, Chu Y, Guimaraes LA, Maia T, Bertioli D et al (2017) Gene expression profiling describes the genetic regulation of Meloidogyne arenaria resistance in Arachis hypogaea and reveals a candidate gene for resistance. Sci Rep 7:1317PubMedPubMedCentralCrossRefGoogle Scholar
  50. Clevenger J, Chu Y, Scheffler B, Ozias-Akins P (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446PubMedPubMedCentralCrossRefGoogle Scholar
  51. Craufurd PQ, Prasad PV, Kakani GV, Wheeler TR, Nigam SN (2003) Heat tolerance in groundnut. Field Crops Res 80:63–77CrossRefGoogle Scholar
  52. Craufurd PQ, Wheeler TR, Ellis RH, Summerfield RJ, Williams JH (1999) Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination and specific leaf area in groundnut. Crop Sci 39:136–142CrossRefGoogle Scholar
  53. Culbreath AK, Todd JW, Gorbet DW, Shokes FM, Pappu HR (1997) Field responses of new peanut cultivar UF 91108 to Tomato spotted wilt virus. Plant Dis 81:1410–1415CrossRefGoogle Scholar
  54. Damicone JP, Holbrook CC, Smith DL, Melouk HA, Chenault KD (2010) Reaction of the core collection of peanut germplasm to Sclerotinia blight and pepper spot. Peanut Sci 37:1–11CrossRefGoogle Scholar
  55. de Beer JF (1963) Influences of temperature on Arachis hypogaea L. with special reference to its pollen viability. Thesis, State Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  56. de Carvalho, Moretzsohn M, Hopkins MS, Mitchell SE, Kresovich S, et al (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4(1):11PubMedCentralCrossRefPubMedGoogle Scholar
  57. de Waele D, Jones BL, Bolton C, Van den Berg E (1989) Ditylenchus destructor in hulls and seeds of peanut. J Nematol 21:10–15PubMedPubMedCentralGoogle Scholar
  58. Dinesh A, Muralidhara B, Gangurde S, More Y (2016) Molecular response of plants to drought, cold and heat stress—a review. Annu Res Rev Biol 10(5):1–8CrossRefGoogle Scholar
  59. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 6:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  60. Dubois AEJ, Pagliarani G, Brouwer RM, Kollen BJ, Dragsted LO et al (2015) First successful reduction of clinical allergenicity of food by genetic modification: Mal d 1-silenced apples cause fewer allergy symptoms than the wild-type cultivar. Allergy 70:1406–1412PubMedCrossRefPubMedCentralGoogle Scholar
  61. Dwivedi SL, Pande S, Rao JN, Nigam SN (2002) Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in groundnut (Arachis hypogaea L.). Euphytica 125:81–88CrossRefGoogle Scholar
  62. Enete AA, Amusa TA (2010) Challenges of agricultural adaptation to climate change in Nigeria: a synthesis of literature. Field Actions Science Reports 4:1–11Google Scholar
  63. Fahlgren N, Feldman M, Gehan M, Wilson MS, Shyu C et al (2015) A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol Plant 8:1–16CrossRefGoogle Scholar
  64. Faye I, Pandey MK, Hamidou F, Rathore A, Ndoye O et al (2015) Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica 206:631–647PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I et al (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26PubMedPubMedCentralCrossRefGoogle Scholar
  66. Food and Agricultural Organisation (FAO) (2017) http:// www.fao.org
  67. Fu JR, Lu XH, Chen RZ, Zang BZ, Liu ZS et al (1988) Osmoconditioning of peanut (Arachis hypogaea L.) seeds with PEG to improve vigour and some biochemical activities. Seed Sci Technol (Switzerland) 16:197–212Google Scholar
  68. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  69. Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845PubMedCrossRefPubMedCentralGoogle Scholar
  70. Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V, et al (2012) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One 7(7):41213PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gayathri M, Shirasawa K, Varshney RK, Pandey MK, Bhat RS (2018) Development of new AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes 11:10Google Scholar
  72. Gerland P, Raftery AE, Ševcíková H, Li N, Gu D et al (2014) World population stabilization unlikely this century. Science 346:234–237PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ghewande MP, Desai S, Basu MS (2002) Diagnosis and management of major diseases of groundnut. NRCG, Junagadh, IndiaGoogle Scholar
  74. Gomez S, Burow MD, Burke JJ, Belamkar V, Puppala N, Burow MD (2011) Heat stress screening of peanut (Arachis hypogaea L.) seedlings for acquired thermotolerance. Plant Growth Regul 65:83–91CrossRefGoogle Scholar
  75. Gorbet DW, Tillman BL (2009) Registration of ‘Florida-07’ peanut. J Plant Reg 1:14–18CrossRefGoogle Scholar
  76. Gowda MVC, Motagi B, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: a Spanish bunch groundnut genotype resistant to rust and late leaf spot. Intl Arachis Newsl 22:29–32Google Scholar
  77. Guo B, Fedorova ND, Chen X, Wan CH, Wang W et al (2011) Gene expression profiling and identification of resistance genes to aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 3(7):737–753PubMedPubMedCentralCrossRefGoogle Scholar
  78. Guo BZ, Chen ZY, Lee RD, Scully BT (2008) Drought stress and preharvest aflatoxin contamination in agricultural commodity: genetics, genomics and proteomics. J Integ Plant Biol 50:1281–1291CrossRefGoogle Scholar
  79. Guo BZ, Widstrom NW, Lee RD, Wilson DM, Coy AE (2005) Prevention of preharvest aflatoxin contamination: integration of crop management and genetic in corn. In: Abbas H (ed) Aflatoxin and Food Safety. CRC Press, Boca Raton, FL, pp 437–457Google Scholar
  80. Guo BZ, Xu G, Cao YG, Holbrook CC, Lynch RE (2006) Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea). Planta 223:512–520PubMedCrossRefPubMedCentralGoogle Scholar
  81. Haider D, Panda RK, Srivastava RK (2015) Impact of elevated temperature and CO2 on productivity of peanut in eastern India. In: ASABE 1st climate change symposium: adaptation and mitigation. American Society of Agricultural and Biological Engineers, pp 256–258Google Scholar
  82. Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, et al. (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS One 12: 0186113PubMedPubMedCentralCrossRefGoogle Scholar
  83. Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in peanut species. Theor Appl Genet 87:379–394PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hamidou F, Heynikoye M, Halilou O, Upadhyaya HD, Vadez V (2017) Drought (WS) and low phosphorus (LP) stress in groundnut: Water extraction pattern and tolerance related traits for breeding program. In: InterDrought-V, Hyderabad, India, 21–25 Feb 2017Google Scholar
  85. Hamidou F, Rathore A, Waliyar F, Vadez V (2014) Although drought intensity increases aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination. Field Crops Res 156:103–110CrossRefGoogle Scholar
  86. Han Y, Zhao X, Liu D, Li Y, Lightfoot DA et al (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol 209:871–884PubMedCrossRefPubMedCentralGoogle Scholar
  87. Herselman L, Thwaites R, Kimmins FM, Courtois B, van der Merwe PJ et al (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433PubMedCrossRefPubMedCentralGoogle Scholar
  88. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334CrossRefGoogle Scholar
  89. Holbrook C, Ozias-Akins P, Chu Y, Culbreath AK, Kvien CK (2017) Registration of ‘TifNV-High O/L’ peanut. J Plant Regist 11:228–230CrossRefGoogle Scholar
  90. Holbrook CC, Burow MD, Chen CY, Pandey MK, Liu L, et al (2016) In: Stalker HT, Wilson RF (eds) Recent advances in peanut breeding and genetics, Peanuts: Genetics, Processing, and Utilization. Academic Press and AOCS Press, pp 111–145Google Scholar
  91. Holbrook CC, Isleib TG, Ozias-Akins P, Chu Y, Knapp SJ et al (2013) Development and phenotyping of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci 40:89–94CrossRefGoogle Scholar
  92. Holbrook CC, Kvien CK, Ruker KS, Wilson DM, Hook JE et al (2000) Preharvest aflatoxin contamination in drought-tolerant and drought-intolerant peanut genotypes. Peanut Sci 27:45–48CrossRefGoogle Scholar
  93. Holbrook CC, Wilson DM, Matheron ME (1998) Source of resistance to pre-harvest aflatoxin contamination in peanut. Proc Amer Peanut Res Educ Soc 30:54Google Scholar
  94. Huang BY, Zhang XY, Miao LJ, Yan Z, Hai Y et al (2008) RNAi transformation of Ah FAD2 gene and fatty acid analysis of transgenic seeds. Chin J Oil Crop Sci 30(3):290–293Google Scholar
  95. Hubick KT, Farquhar GD, Shorter R (1986) Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm. Austral J Plant Physiol 13:803–816Google Scholar
  96. Hubick KT, Shorter R, Farquhar GD (1988) Heritability and genotype × environment interactions of carbon isotope discrimination and transpiration efficiency in peanut (Arachis hypogaea L.). Austral J Plant Physiol 15:799–813Google Scholar
  97. Hundal SS, Kaur P (1996) Climate change and its impact on crop productivity in the Punjab, India. In: Abrol YP, Gadgil G, Pant GB (eds) Climate variability and agriculture. Narosa Publishing House, New Delhi, India, pp 377–393Google Scholar
  98. Isleib TG, Beute MK, Rice PW, Hollowell JE (1995) Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc Amer Peanut Res Educ Soc 27:25Google Scholar
  99. Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, New York, pp 47–128CrossRefGoogle Scholar
  100. Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23PubMedPubMedCentralCrossRefGoogle Scholar
  101. Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M et al (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213PubMedCrossRefGoogle Scholar
  102. Jung S, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut (Arachis hypogaea L.) II. Molecular basis and genetics of the trait. Mol Gen Genet 263:806–811PubMedCrossRefGoogle Scholar
  103. Kambiranda DM, Vasanthaiah HKN, Katam R, Ananga A, Basha S, et al (2011) In: Vasanthaiah HKN, Kambiranda D (eds) Impact of drought stress on groundnut (Arachis hypogaea L.) productivity and food safety. Plants and environment, InTech, Available from: http://www.intechopen.com/
  104. Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129(9):1639–1655PubMedCrossRefGoogle Scholar
  105. Ketring DL (1984) Temperature effects on vegetative and reproductive development of peanuts. Crop Sci 24:877–882CrossRefGoogle Scholar
  106. Ketring DL, Brown RH, Sullivan GH, Johnson BB (1982) Growth physiology. In: Pattee HE, Young CT (eds) Groundnut science and technology. Proc Amer Peanut Res Educ Soc, Yoakum, Texas, pp 411–457Google Scholar
  107. Khedikar YP, Gowda MV, Sarvamangala C, Patgar KV, Upadhyaya HD et al (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kochert G, Stalker HT, Gimenes M, Galaro L, Lopes CR et al (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (L). Amer J Bot 83:1282–1291CrossRefGoogle Scholar
  109. Kole C (2017) Combating climate change for FNEE security. international conference on the status of plant & animal genome research, San Diego, CA, 14–18 Jan 2017Google Scholar
  110. Kolekar RM, Sukruth M, Nadaf HL, Motagi BN, Lingaraju S et al (2017) Marker-assisted backcrossing to develop foliar disease resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136:948–953CrossRefGoogle Scholar
  111. Krapovickas A, Gregory WC (1994) Taxonomı a del ge´nero Arachis (Leguminosae). Bonplandia 8(1–4):1–186Google Scholar
  112. Kulkarni JH, Ravindra V, Sojitra VK, Bhatt DM (1988) Growth, nodulation and N uptake of groundnut (Arachis hypogaea L.) as influenced by water deficits stress at different phenophase. Oleagineus 43(11): 415–419Google Scholar
  113. Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kumari V, Gowda MV, Tasiwal V, Pandey MK, Bhat RS, et al (2014) Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J 2(2–3):110–119CrossRefGoogle Scholar
  115. Leal-Bertioli SC, Cavalcante U, Gouvea EG, Ballén-Taborda C, Shirasawa K, et al (2015) Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker assisted selection. G3 Genes Genom Genet 5:1403–1413Google Scholar
  116. Liang X, Zhou G, Hong Y, Chen X, Liu H et al (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci 36:29–34CrossRefGoogle Scholar
  117. Lin T, Zhu G, Zhang J, Xu X, Yu Q et al (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226PubMedCrossRefPubMedCentralGoogle Scholar
  118. Liu FZ, Wan YS, Wang HG (2005) Transformation of peanut with γ-tocopherol methyl transferase Gene via Agrobacterium tumefaciens. J Chin Cereals Oils Assoc 20(1):61–64Google Scholar
  119. Liu Z, Feng S, Pandey MK, Chen X, Culbreath AK, Varshney RK, and Guo B (2013) Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. J Integr Plant Biol 55:453–461.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Lobet G (2017) Image analysis in plant sciences: publish then perish. Trends Plant Sci 22:559–566PubMedCrossRefPubMedCentralGoogle Scholar
  121. López Y, Nadaf HL, Smith OD, Connell JP, Reddy AS et al (2000) Isolation and characterization of the Δ-12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138CrossRefGoogle Scholar
  122. Mackay IJ, Powell W (2007) The significance and relevance of linkage disequilibrium and association mapping in crops. Trends Plant Sci 12:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  123. Magbanua ZV, Wilde HD, Roberts JK, Chowdhury K, Abad J et al (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleo-capsid gene sequence. Mol Breed 6:227–236CrossRefGoogle Scholar
  124. Mallikarjuna N, Senthilvel S, Hoisington D (2011) Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet Resour Crop Evol 58:889–907CrossRefGoogle Scholar
  125. Matand K, Prakash CS (2007) Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron. J Biotechnol 130(2):202–207PubMedCrossRefPubMedCentralGoogle Scholar
  126. Mayeux AH, Waliyar F, Ntare BR (2003) Groundnut varieties recommended by the groundnut germplasm project (GGP) for West and Central Africa (In En., Fr.). International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, IndiaGoogle Scholar
  127. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mehan VK, Reddy DDR, McDonald D (1993) Resistance in groundnut genotypes to Kalahasti malady caused by the stunt nematode, tylenchorhynchus brevilineatus. Intl J Pest Manage 39:201–203CrossRefGoogle Scholar
  129. Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, et al (2013) Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through agrobacterium-mediated genetic transformation. Indian J Virol 24(2):205–213PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mensah JK, Akomeah PA, Ikhajiagbe B, Ekpekurede EO (2006) Effects of salinity on germination, growth and yield of five groundnut genotypes. Afr J Biotechnol 5(20):1973–1979Google Scholar
  131. Meuwessin R (2001) Genomic selection: future of marker assisted selection and animal breeding. Marker assisted selection as fast track increase genetic gain in plant and animal breeding? Session II. 54–59Google Scholar
  132. Nagamadhuri KV, Latha P, Vasanthi RP, John K, Reddy PVRM, et al (2018) Evaluation of groundnut genotypes for phosphorus efficiency through leaf acid phosphatase activity. Legume Res  https://doi.org/10.18805/lr-3927.1-7
  133. Nagamadhuri KV, Latha P, Vasanthi RP, John K, Reddy PVRM, et al (2017a) Screening of groundnut genotypes for P efficiency using leaf Acid Phosphatase activity. In: InterDrought-V, Hyderabad, India, 21–25 Feb 2017Google Scholar
  134. Nagamadhuri KV, Lata P, Murali V, Reddy PVRM, Lavanyakumari P, et al (2017b) Drought-tolerant peanut genotypes have higher leaf P-content and lower leaf acid phosphatase activity. In: Ninth international conference of the peanut research community—advances in Arachis through genomics & biotechnology, Cordoba, Argentina, 14–17 Mar 2017Google Scholar
  135. Nageswara Rao RC, Wright GC (1994) Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci 34:98–103CrossRefGoogle Scholar
  136. Nageswara Rao RC, Udaykumar M, Farquhar GD, Talwar HS, Prasad TG (1995) Variation in carbon isotope discrimination ind its relationship to specific leaf area and ribulose-1,5-bisphosphate carboxylase content in groundnut genotypes. Austral J Plant Physiol 22:545–551Google Scholar
  137. Nautiyal PC, Nageswara Rao R, Joshi YC (2002) Moisture-deficit induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. Field Crop Res 74:67–79CrossRefGoogle Scholar
  138. Nautiyal PC, Rajgopal K, Zala PV, Pujari DS, Basu M et al (2008) Evaluation of wild Arachis species for abiotic stress tolerance: I. thermal stress and leaf water relations. Euphytica 159:43–57CrossRefGoogle Scholar
  139. Nayak SN, Agarwal G, Pandey MK, Sudini HK, Jayale SA et al (2017a) Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization. Sci Rep 7:9659PubMedPubMedCentralCrossRefGoogle Scholar
  140. Nayak SN, Pandey MK, Jackson SA, Liang X, Varshney RK (2017b) Sequencing ancestor diploid genomes for enhanced genome understanding and peanut improvement. In: Varshney RK, Pandey MK, Puppala N (eds) The peanut genome. Springer, New York, pp 135–147CrossRefGoogle Scholar
  141. Nelson SC, Simpson CE, Starr JL (1989) Resistance to Meloidogyne arenaria in Arachis spp. germplasm. J Nematol 21:654–660PubMedPubMedCentralGoogle Scholar
  142. Nelson SC, Starr JL, Simpson CE (1990) Expression of resistance to Meloidogyne arenaria in Arachis batizocoi and A. cardenasii. J Nematol 22:242–244PubMedPubMedCentralGoogle Scholar
  143. Newman JA (2003) Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics. Glob Change Biol 10:5–15CrossRefGoogle Scholar
  144. Nickel R (2018) Gene-editing startups ignite the next ‘Frankenfood’ fight. Reuters, 10 Aug.www.reuters.com
  145. Nigam SN, Nageswara Rao RC, Wynne JC, Williams JH, Fitzner M et al (1994) Effect and interaction of temperature and photoperiod on growth and partitioning in three groundnut (Arachis hypogaea L.) genotypes. Ann Appl Biol 125:541–552CrossRefGoogle Scholar
  146. Nigam SN, Waliyar F, Aruna R, Reddy SV, Lava Kumar P et al (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49CrossRefGoogle Scholar
  147. Ong CK (1986) Agroclimatological factors affecting phenology of groundnut. In: Agrometeorology of groundnut, proceedings of an international symposium, ICRISAT Sahelian Center, ICRISAT, Patancheru, Andhra Pradesh, India, pp 115–125, 21–26 Aug 1985Google Scholar
  148. Oputa CO (1981) Response of Celosia argentea L. to salinity, morphological changes and ionic adjustments. Niger J Sci 3:45–53Google Scholar
  149. Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN et al (2017a) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci rep 7:40577PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, et al (2017b) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15(8):927–41PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pandey MK, Wang H, Khera P, Vishwakarma MK, Kale SM, et al (2017c) Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci 8:25Google Scholar
  152. Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P et al (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651PubMedCrossRefPubMedCentralGoogle Scholar
  153. Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455PubMedPubMedCentralGoogle Scholar
  154. Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS et al (2014a) Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE 9(8):e105228PubMedPubMedCentralCrossRefGoogle Scholar
  155. Pandey MS, Wang ML, Qaio L, Feng S, Khera P, et al (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics 15:133Google Scholar
  156. Pandey MK, Varshney RK (2018) Groundnut entered post-genome sequencing era: opportunities and challenges in translating genomic information from genome to field. In “Biotechnologies in Crop Improvement Vol 3’’ (eds SS Gosal and SH Wani), Springer International PublishingGoogle Scholar
  157. Patel KG, Viralkumar BM, Mishra GP, Dobaria JR, Radhakrishnan T (2016) Transgenic peanut overexpressing mtlD gene confers enhanced salinity stress tolerance via mannitol accumulation and differential antioxidative responses. Acta Physiol Plant 38:181CrossRefGoogle Scholar
  158. Pattanashetti S, Naidu GK, Prakyath Kumar KV, Singh OK, Biradar B (2018) Identification of iron deficiency chlorosis tolerant sources from mini-core collection of groundnut (Arachis hypogaea L.). Plant Genet Resour Characteriz Utiliz 1–13.Google Scholar
  159. Peng W, Jiang H, Ren X et al (2010) Construction of peanut AFLP map and analysis of bacterial wilt resistant disease QTLs. Acta Agri Boreali-Sin 25(6):81–86Google Scholar
  160. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898PubMedCrossRefPubMedCentralGoogle Scholar
  161. Prasad PVV, Craufurd PQ, Summerfield RJ, Wheeler TR (2000) Effects of short episodes of heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J Exp Bot 345:777–784Google Scholar
  162. Proite K, Carneiro R, Falcao R, Gomes A, Leal-Bertioli S et al (2008) Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathol 57:974–980CrossRefGoogle Scholar
  163. Puangbut D, Jogloy S, Vorasoot N, Akkasaeng C, Kesmala T et al (2009) Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agri Water Manage 96:1460–1466CrossRefGoogle Scholar
  164. Qin H, Feng S, Chen C, Guo Y, Knapp S et al (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664PubMedCrossRefPubMedCentralGoogle Scholar
  165. Qin H, Gu Q, Zhang J, Sun L, Kuppu S, Zhang Y et al (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914PubMedCrossRefGoogle Scholar
  166. Qin H, Gu Q, Kuppu S, Sun L, Zhu X, Mishra N et al (2013) Expression of the Arabidopsis vacuolar H + -pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7:345–355CrossRefGoogle Scholar
  167. Radhakrishnan T, Chandran K, Paria P, Ghetia NR, Bandyopadhyay A (2002) Somatic embryogenesis in groundnut—a comparison of sixty-nine Indian genotypes. Trop Sci 42:178–184Google Scholar
  168. Radhakrishnan T, Chandran K, Rajgopal K, JDobaria JR, Bandyopadhyay A (2000b) Genotypic variation in regeneration behaviour of Indian groundnut cultivars. Trop Sci 40:199–205Google Scholar
  169. Radhakrishnan T, Murthy TGK, Chandran K, Bandyopadhyay A (2000a) Micropropagation in peanut (A. hypogaea L.). Biol Plant 43:447–450CrossRefGoogle Scholar
  170. Radhakrishnan T, Murthy TGK, Chandran K, Bandyopadhyay A (2001) Somatic embryogenesis in Arachis hypogaea- revisited. Austral J Bot 49(6):753–759CrossRefGoogle Scholar
  171. Ratnakumar P, Rajendrudu G, Swamy PM (2013) Photosynthesis and growth responses of peanut (Arachis hypogaea L.) to salinity at elevated CO2. Plant Soil Environ 59:410–416CrossRefGoogle Scholar
  172. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y et al (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132PubMedCrossRefPubMedCentralGoogle Scholar
  173. Reddi GHS, Reddy TY (1995) Efficient use of irrigation Indian water. Kalyani Publishers, New Delhi, IndiaGoogle Scholar
  174. Rogers A, Ainsworth EA, Leakey AD (2009) Update on legumes and elevated CO2 will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016PubMedPubMedCentralCrossRefGoogle Scholar
  175. Ruane AC, McDermid S, Rosenzweig C, Baigorria GA, Jones JW et al (2014) Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP). Glob Chang Biol 20:394–407PubMedCrossRefGoogle Scholar
  176. Sarvamangala C, Gowda MV, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122:49–59CrossRefGoogle Scholar
  177. Selvaraj MG, Narayana M, Schubert AM, Ayers JL, Baring MR, et al (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Elec J Biotechnol 12Google Scholar
  178. Shan L, Guiying T, Xu P, Liu Z, Yu-Ping B (2009) High efficiency in vitro plant regeneration from epicotyl explants of Chinese peanut cultivars. Vitro Cell Dev Biol Plant 45:525–531CrossRefGoogle Scholar
  179. Sharma KK, Anjaiah VV (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19PubMedCrossRefPubMedCentralGoogle Scholar
  180. Sharma KK, Pothana A, Prasad K, Shah D, Kaur J et al (2018) Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol J 16:1024–1033PubMedCrossRefPubMedCentralGoogle Scholar
  181. Sharma S, Pandey MK, Sudini HK, Upadhyaya HD, Varshney RK (2017) Harnessing genetic diversity of wild Arachis species for genetic enhancement of cultivated peanut. Crop Sci 57(3):1121–1131CrossRefGoogle Scholar
  182. Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT et al (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut. Front Plant Sci 8:794PubMedPubMedCentralCrossRefGoogle Scholar
  183. Shen B, Zhang WS, Zhang J, Zhou J, Wang J et al (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Meth 11(4):399–402CrossRefGoogle Scholar
  184. Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S et al (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80PubMedPubMedCentralCrossRefGoogle Scholar
  185. Sicherer HS, Sampson AH (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133(2):291–307PubMedCrossRefPubMedCentralGoogle Scholar
  186. Simpson CE, Krapovickas A, Valls JFM (2001) History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci 28:78–79CrossRefGoogle Scholar
  187. Simpson CE, Starr JL, Church GT, Burrow MD, Paterson AH (2003) Registration of NemaTAM peanut. Crop Sci 43:1561CrossRefGoogle Scholar
  188. Simpson CE (1991) Pathways for introgression of pest resistance into (Arachis hypogaea) L. Peanut Sci 18:22–26CrossRefGoogle Scholar
  189. Simpson CE, Starr JL, Baring MR, Burow MD, Cason JM et al (2013) Registration of ‘Webb’ Peanut. J Plant Regist 7:265–268CrossRefGoogle Scholar
  190. Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Science—CROP SCI. 41Google Scholar
  191. Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN et al (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43:440–441CrossRefGoogle Scholar
  192. Singh AL, Hariprassana K, Solanki RM (2008) Screening and selection of groundnut genotypes for tolerance of soil salinity. Austral J Crop Sci 1(3):69–77Google Scholar
  193. Sivakumar MVK, Maidoukia A, Stern RD (1993) Agroclimatology of West Africa: Niger. Information Bulletin No. 5. ICRISAT, Patancheru, IndiaGoogle Scholar
  194. Smartt J, Gregory WC (1967) Interspecific cross-compatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oleagineux 22:455–459Google Scholar
  195. Songsri P, Jogloy S, Holbrook CC, Kesmala T, Vorasoot N, Akkasaeng C et al (2009) Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agri Water Manage 96:790–798CrossRefGoogle Scholar
  196. Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis Species. Adv Agron 41:1–40Google Scholar
  197. Stalker HT, Simpson CE (1995) Genetic resources in Arachis. In: Pattee HE, Stalker HT (eds) Advances in Peanut Science. Amer Peanut Res Educ Soc, Stillwater, OK, pp 14–53Google Scholar
  198. Stalker HT, Wynne JC, Company M (1979) Variation in progenies of an Arachis hypogaea diploid wild species hybrid. Euphytica 28:675–684CrossRefGoogle Scholar
  199. Subrahmanyam P, Williams JH, Mcdonald D, Gibbons RW (1984) The influence of foliar diseases and their control by selective fungicides on a range of groundnut (Arachis hypogaea L.) genotypes. Ann Appl Biol 104:467–476CrossRefGoogle Scholar
  200. Sujay V, Gowda MV, Pandey MK, Bhat RS, Khedikar YP et al (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:773–788PubMedCrossRefPubMedCentralGoogle Scholar
  201. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:770–783CrossRefGoogle Scholar
  202. Thiessen LD, Woodward JE (2012) Diseases of peanut caused by soilborne pathogens in the Southwestern United States. Agronomy, vol. 2012, Article ID 517905, 9 pagesGoogle Scholar
  203. Tu C, Booker FL, Burkey KO, Hu S (2009) Elevated atmospheric carbon dioxide and o differentially alter nitrogen acquisition in peanut. Crop Sci 49:1827CrossRefGoogle Scholar
  204. Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45(4):1432–1440CrossRefGoogle Scholar
  205. Upadhyaya HD, Dwivedi SL, Nadaf HL, Singh S (2011) Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits. Euphytica 182:103–115CrossRefGoogle Scholar
  206. Upadhyaya HD, Nigam SN, Singh S (2001) Evaluation of groundnut core collections to identify sources of tolerance to low temperature at germination. Indian J Plant Genet Resour 14:165–167Google Scholar
  207. Upadhyaya HD, Reddy LJ, Dwivedi SL, Gowda CLL, Singh S (2009) Phenotypic diversity in cold-tolerant peanut (Arachis hypogaea L.) germplasm. Euphytica 165:279–291CrossRefGoogle Scholar
  208. Upadhyaya HD, Reddy LJ, Gowda CLL, Singh S (2006) Identification of diverse groundnut germplasm: sources of early-maturity in a core collection. Field Crop Res 97:261–267CrossRefGoogle Scholar
  209. Valls JFM, Simpson CE (2005) New species of Arachis L. (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia (Argentina) 14:35–64Google Scholar
  210. Van Duivenbooden N, Abdoussalam S, Ben Mohamed A (2002) Impact of climate change on agricultural production in the Sahel-Part 2. Case study for groundnut and cowpea in Niger. Clim Change 54:349Google Scholar
  211. Varman PV, Raveendran TS (1991) New source of seed dormancy in bunch groundnut. Curr Res 20(11):237–238Google Scholar
  212. Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L et al (2009) The first SSR based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739PubMedCrossRefGoogle Scholar
  213. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630PubMedCrossRefPubMedCentralGoogle Scholar
  214. Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, et al (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.) Theor Appl Genet 127:1771PubMedCrossRefPubMedCentralGoogle Scholar
  215. Varshney RK, Roorkiwal M, Nguyen T (2013) Legume genomics: from genomic resources to molecular breeding. Plant Genome 6:1–7Google Scholar
  216. Vindhiyavarman P, Nigam SN, Janila P, Manivannan N, Sarayanan S et al (2014) A new high yielding Spanish bunch groundnut variety Co 7 (ICGV 00350) for the drought prone areas of TamilNadu. Elec J Plant Breed 5:192–196Google Scholar
  217. Vishwakarma MK, Nayak LSN, Guo B, Wan L, Liao B et al (2017a) Classical and molecular approaches for mapping of genes and quantitative trait loci in peanut (Arachis hypogaea L.). In: Varshney RK, Pandey MK, Puppala N (eds) The peanut Genome. Springer, New York, pp 93–116CrossRefGoogle Scholar
  218. Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y et al (2017b) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Front Plant Sci 8:2064PubMedPubMedCentralCrossRefGoogle Scholar
  219. Vishwakarma MK, Pandey MK, Shasidhar Y, Manohar SS, Nagesh P et al (2016) Identification of two major quantitative trait locus for fresh seed dormancy using the diversity arrays technology and diversity arrays technology-seq based genetic map in Spanish-type peanuts. Plant Breed 135(3):367–375CrossRefGoogle Scholar
  220. Vu JCV (2005) Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environ Exp Bot 53:85–95CrossRefGoogle Scholar
  221. Vuren DPV, Ochola WO, Riha S, Gampietro M, Ginze H et al (2009) Outlook on agricultural change and its drivers. In: McIntyre BD, Herren HR, Wakhungu J, Watson RT (eds) Agriculture at a crossroads. Island Press, Washington, DCGoogle Scholar
  222. Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala UN et al (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145:901–913CrossRefGoogle Scholar
  223. Wang H, Pandey MK, Qiao L, Qin H, Culbreadth AK, et al (2013) Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). Plant Genome 6:3Google Scholar
  224. Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, et al (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One 10(4):e0119454PubMedPubMedCentralCrossRefGoogle Scholar
  225. Wang X, Xu P, Yin L, Ren Y, Li S, et al (2018) Genomic and transcriptomic analysis identified gene clusters and candidate genes for oil content in peanut (Arachis hypogaea L.). Plant Mol Biol Rep 36:518PubMedPubMedCentralCrossRefGoogle Scholar
  226. Williams JH, Boote KJ (1995) Physiology and modelling predicting the unpredictable legume. In: Pattee HE, Stalker HT (eds) Advances in groundnut science. APRES, Stillwater, OK, pp 301–353Google Scholar
  227. Wilson JN, Chopra R, Baring MR, Selvaraj MG, Simpson CE et al (2017) Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol 10:1–17CrossRefGoogle Scholar
  228. Wood IMW (1968) The effect of temperature at early flowering on the growth and development of groundnuts (Arachis hypogaea L.). Austral J Agri Res 19:241–251CrossRefGoogle Scholar
  229. Wright GC, Hubick KT, Farquhar GD (1988) Discrimination in carbon isotopes of leaves correlates with water-use efficiency of field-grown peanut cultivars. Funct Plant Biol 15:815–825CrossRefGoogle Scholar
  230. Xavier A, Muir WM, Rainey KM (2016) Assessing predictive properties of genome-wide selection in soybeans. G3 Genes Genom Genet 6(8):2611–2616PubMedPubMedCentralCrossRefGoogle Scholar
  231. Xu PL, Shan L, Liu ZJ, Wang F, Zhang B, et al (2003) Insect-resistant CpTI gene transferred into peanut (A.hypogaea L.) via Agrobacterium tumefaciens and regeneration of transgenic plantlets. Chin J Oil Crop Sci 25(2):5–31Google Scholar
  232. Yadav SB, Patel HR, Mishra SK, Parmar PK, Karandey BI et al (2017) Impact assessment of climate change on groundnut yield of middle Gujarat region. Mausam 68:93–98Google Scholar
  233. Yang H, Singsit C, Wang A, Gonsalves D, Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep 17:693–699PubMedCrossRefPubMedCentralGoogle Scholar
  234. Yu SL, Wang CT, Yang QL, Zhang DX, Zhang XY et al (2011) Peanut genetics and breeding in China. Shanghai Science and Technology Press, ShanghaiGoogle Scholar
  235. Zhang H, Zhang J, Wei P, Zhang B, Gou F et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807PubMedCrossRefPubMedCentralGoogle Scholar
  236. Zhang X, Zhang J, He X, Wang Y, Ma X et al (2017) Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci 26(8):1611CrossRefGoogle Scholar
  237. Zhang XQ, Shan L, Tang GY, Teng N, Bi YP (2007) Transformation of RNAi suppressed expression vector containing of Δ 12 fatty acid desaturase gene via Agrobecterium infection in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci 29(4):409–415Google Scholar
  238. Zhang Z, Wang Z, Huai D, Tan J, Chen J, et al (2018) Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agri Sin 51(9):1641–1652Google Scholar
  239. Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, et al (2016) QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.) Mol Breed 36:13Google Scholar
  240. Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, et al (2018) Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv 4 (5)Google Scholar
  241. Zhuang DH, Zou XH, Zhou M, Zheng YX, Zhong QM et al (2003) Studies on Agrobacterium tumefaciens-mediated genetic transformation of peanut (Arachis hypogaea L.). Chin J Oil Crop Sci 25:47–51Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sunil S. Gangurde
    • 1
  • Rakesh Kumar
    • 1
  • Arun K. Pandey
    • 1
  • Mark Burow
    • 2
    • 3
  • Haydee E. Laza
    • 3
    • 4
  • Spurthi N. Nayak
    • 5
  • Baozhu Guo
    • 6
  • Boshou Liao
    • 7
  • Ramesh S. Bhat
    • 5
  • Naga Madhuri
    • 8
  • S. Hemalatha
    • 9
  • Hari K. Sudini
    • 1
  • Pasupuleti Janila
    • 1
  • Putta Latha
    • 8
  • Hasan Khan
    • 10
  • Babu N. Motagi
    • 5
  • T. Radhakrishnan
    • 11
  • Naveen Puppala
    • 12
  • Rajeev K. Varshney
    • 1
    Email author
  • Manish K. Pandey
    • 1
    • 9
    Email author
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  2. 2.Texas A & M AgriLife ResearchLubbockUSA
  3. 3.Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA
  4. 4.USDA-ARS-CSRLLubbockUSA
  5. 5.University of Agricultural Sciences (UAS)DharwadIndia
  6. 6.Crop Protection and Management Research UnitUSDA-ARSTiftonUSA
  7. 7.Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
  8. 8.Regional Agricultural Research Station (RARS)Acharya NG Ranga Agricultural University (ANGRAU)TirupatiIndia
  9. 9.BS Abdur Rahman UniversityChennaiIndia
  10. 10.University of Agricultural Sciences (UAS)RaichurIndia
  11. 11.ICAR-Directorate of Groundnut Research (ICAR-DGR)JunagadhIndia
  12. 12.New Mexico State University-Agricultural Science Center at ClovisNew MexicoUSA

Personalised recommendations