Skip to main content

Integrative Human Cardiovascular Responses to Hyperthermia

Abstract

Progressive whole-body hyperthermia with passive heat stress is associated with a host of physiological adjustments. These include large increases in peripheral blood flow and cardiac output and a smaller selective redistribution of blood flow from the cerebral and visceral tissues to the limbs, head, and torso, with perfusion pressure being only slightly reduced. Aerobic metabolism also increases in these conditions, but the magnitude is small in absolute terms, suggesting a predominant role of thermosensitive mechanisms in passive hyperthermia-induced cardiovascular adjustments. Although exercise heat stress requires substantially greater blood flow requirements compared to passive heat stress alone, the magnitude of this hyperemic response is less than would be expected given the extent to which both conditions independently increase blood flow in isolation. As a result, submaximal exercise limb blood flow is only slightly higher during small muscle-mass exercise in the heat, and is similar to control conditions during whole-body exercise. When exercise intensity is increased further towards maximal levels, the superimposition of heat stress leads to earlier reductions in regional and systemic blood perfusion, compromised locomotor limb aerobic metabolism, and ultimately results in impaired endurance capacity. This chapter provides an integrative overview of the human cardiovascular response to passive heat stress and exercise heat stress, with emphasis on its consequences on exercise performance in the heat.

Keywords

  • Physiological strain
  • Blood flow
  • Hydration
  • Hyperthermia
  • Cardiovascular interactions
  • Cardiovascular control

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93515-7_3
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-93515-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6

References

  1. Crandall CG, González-Alonso J. Cardiovascular function in the heat-stressed human. Acta Physiol. 2010;199(4):407–23.

    CAS  CrossRef  Google Scholar 

  2. Tipton CM. Medicine AC of S. ACSM’s advanced exercise physiology. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  3. Rowell LB, Murray JA, Brengelmann GL, Kraning KK. Human cardiovascular adjustments to rapid changes in skin temperature during exercise. Circ Res. 1969;24(5):711–24.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Minson CT, Wladkowski SL, Cardell AF, Pawelczyk JA, Kenney WL. Age alters the cardiovascular response to direct passive heating. J Appl Physiol. 1998;84(4):1323–32.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985;366(1):233–49.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, et al. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol. 2005;566(1):273–85.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Mortensen SP, Damsgaard R, Dawson EA, Secher NH, González-Alonso J. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J Physiol. 2008;586(10):2621–35.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Kenney WL, Stanhewicz AE, Bruning RS, Alexander LM. Blood pressure regulation III: what happens when one system must serve two masters: temperature and pressure regulation? Eur J Appl Physiol. 2014;114(3):467–79.

    CrossRef  PubMed  Google Scholar 

  10. Pearson J, Low DA, Stöhr E, Kalsi K, Ali L, Barker H, et al. Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow. AJP Regul Integr Comp Physiol. 2011;300(3):R663–73.

    CAS  CrossRef  Google Scholar 

  11. White MD. Components and mechanisms of thermal hyperpnea. J Appl Physiol. 2006;101(2):655–63.

    CrossRef  PubMed  Google Scholar 

  12. Ogoh S, Sato K, Okazaki K, Miyamoto T, Hirasawa A, Morimoto K, et al. Blood flow distribution during heat stress: cerebral and systemic blood flow. J Cereb Blood Flow Metab. 2013;33(12):1915–20.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Rowell LB, Brengelmann GL, Murray JA. Cardiovascular responses to sustained high skin temperature in resting man. J Appl Physiol. 1969;27(5):673–80.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Bonde-Petersen F, Schultz-Pedersen L, Dragsted N. Peripheral and central blood flow in man during cold, thermoneutral, and hot water immersion. Aviat Space Environ Med. 1992;63(5):346–50.

    CAS  PubMed  Google Scholar 

  15. Niimi Y, Matsukawa T, Sugiyama Y, Shamsuzzaman ASM, Ito H, Sobue G, et al. Effect of heat stress on muscle sympathetic nerve activity in humans. J Auton Nerv Syst. 1997;63(1):61–7.

    Google Scholar 

  16. Ganio MS, Overgaard M, Seifert T, Secher NH, Johansson PI, Meyer MAS, et al. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men. AJP Hear Circ Physiol. 2012;302(8):H1756–61.

    CAS  CrossRef  Google Scholar 

  17. Chiesa ST, Trangmar SJ, González-Alonso J. Temperature and blood flow distribution in the human leg during passive heat stress. J Appl Physiol. 2016;120(9):1047–58.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Peters JK, Nishiyasu T, Mack GW. Reflex control of the cutaneous circulation during passive body core heating in humans. J Appl Physiol. 2000;88(5):1756–64.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Nelson MD, Altamirano-Diaz LA, Petersen SR, DeLorey DS, Stickland MK, Thompson RB, et al. Left ventricular systolic and diastolic function during tilt-table positioning and passive heat stress in humans. Am J Physiol Circ Physiol. 2011;301(2):H599–608.

    CAS  CrossRef  Google Scholar 

  20. Wyss CR, Brengelmann GL, Johnson JM, Rowell LB, Silverstein D. Altered control of skin blood flow at high skin and core temperatures. J Appl Physiol. 1975;38(5):839–45.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Gorman AJ, Proppe DW. Mechanisms producing tachycardia in conscious baboons during environmental heat stress. J Appl Physiol. 1984;56:441–6.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Stöhr EJ, González-Alonso J, Pearson J, Low DA, Ali L, Barker H, et al. Effects of graded heat stress on global left ventricular function and twist mechanics at rest and during exercise in healthy humans. Exp Physiol. 2011;96(2):114–24.

    CrossRef  PubMed  Google Scholar 

  23. Crandall CG, Wilson TE, Marving J, Vogelsang TW, Kjaer A, Hesse B, et al. Effects of passive heating on central blood volume and ventricular dimensions in humans. J Physiol. 2008;586(1):293–301.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Keller DM, Low DA, Wingo JE, Brothers RM, Hastings J, Davis SL, et al. Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans. J Physiol. 2009;587(5):1131–9.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Wilson TE, Brothers RM, Tollund C, Dawson EA, Nissen P, Yoshiga CC, et al. Effect of thermal stress on Frank-Starling relations in humans. J Physiol. 2009;587(13):3383–92.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Wilson TE, Tollund C, Yoshiga CC, Dawson EA, Nissen P, Secher NH, et al. Effects of heat and cold stress on central vascular pressure relationships during orthostasis in humans. J Physiol. 2007;585(1):279–85.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Brothers RM, Bhella PS, Shibata S, Wingo JE, Levine BD, Crandall CG. Cardiac systolic and diastolic function during whole body heat stress. Am J Physiol Circ Physiol. 2009;296(4):H1150–6.

    CAS  CrossRef  Google Scholar 

  28. Nelson MD, Haykowsky MJ, Petersen SR, DeLorey DS, Cheng-Baron J, Thompson RB. Increased left ventricular twist, untwisting rates, and suction maintain global diastolic function during passive heat stress in humans. Am J Physiol Circ Physiol. 2010;298(3):H930–7.

    CAS  CrossRef  Google Scholar 

  29. Brothers RM, Bhella PS, Shibata S, Wingo JE, Levine BD, Crandall CG. Cardiac systolic and diastolic function during whole body heat stress. Am J Physiol Heart Circ Physiol. 2009;296(4):H1150–6.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Rowell LB, Brengelmann GL, Blackmon JR, Murray JA. Redistribution of blood flow during sustained high skin temperature in resting man. J Appl Physiol. 1970;28(4):415–20.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Taylor WF, Johnson JM, Kosiba WA, Kwan CM. Graded cutaneous vascular responses to dynamic leg exercise. J Appl Physiol. 1988;64(5):1803–9.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Stephenson LA, Wenger CB, O’Donovan BH, Nadel ER. Circadian rhythm in sweating and cutaneous blood flow. Am J Phys. 1984;246(3):R321–4.

    CAS  Google Scholar 

  33. Crandall CG, Stephens DP, Johnson JM. Muscle metaboreceptor modulation of cutaneous active vasodilation. Med Sci Sports Exerc. 1998;30(4):490–6.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Jackson DN, Kenny GP. Upright LBPP application attenuates elevated postexercise resting thresholds for cutaneous vasodilation and sweating. J Appl Physiol. 2003;95(1):121–8.

    CrossRef  PubMed  Google Scholar 

  35. Kellogg DL Jr, Liu Y, Kosiba IF, O’Donnell D. Role of nitric oxide in the vascular effects of local warming of the skin in humans. J Appl Physiol. 1999;86(4):1185–90.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Kellogg DL, Zhao JL, Wu Y. Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. Am J Physiol Heart Circ Physiol. 2008;295(1):H123–9.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Johnson JM, Kellogg DL Jr. Local thermal control of the human cutaneous circulation. J Appl Physiol. 2010;109(4):1229–38.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J Appl Physiol. 2001;91(4):1619–26.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Black MA, Green DJ, Cable NT. Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels. J Physiol. 2008;586(14):3511–24.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Taylor WF, Johnson JM, O’Leary D, Park MK. Effect of high local temperature on reflex cutaneous vasodilation. J Appl Physiol. 1984;57(1):191–6.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Johnson JM, Brengelmann GL, Rowell LB. Interactions between local and reflex influences on human forearm skin blood flow. J Appl Physiol. 1976;41(6):826–31.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Detry JM, Brengelmann GL, Rowell LB, Wyss C. Skin and muscle components of forearm blood flow in directly heated resting man. J Appl Physiol. 1972;32(4):506–11.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Hales JRS, Rowell LB, King RB. Regional distribution of blood flow in awake heat-stressed baboons. Am J Phys. 1979;237(6):H705–12.

    CAS  Google Scholar 

  44. Abramson DI, Kahn A, Tuck S Jr, Turman GA, Rejal H, Fleischer CJ. Relationship between a range of tissue temperature and local oxygen uptake in the human forearm. I. Changes observed under resting conditions. J Clin Invest. 1958;37(7):1031–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Kalsi KK, Chiesa ST, Trangmar SJ, Ali L, Lotlikar MD, González-Alonso J. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature-dependent ATP release from human blood and endothelial cells. Exp Physiol. 2017;102(2):228–44.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Wyper DJ, McNiven DR. The effect of microwave therapy upon muscle blood flow in man. Br J Sports Med. 1976;10(1):19–21.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Lehmann JF, Guy AW, Stonebridge JB, DeLateur BJ. Evaluation of a therapeutic direct-contact 915-MHz microwave applicator for effective deep-tissue heating in humans. IEEE Trans Microw Theory Tech. 1978;26(8):556–63.

    CrossRef  Google Scholar 

  48. Sekins KM, Lehmann JF, Esselman P, Dundore D, Emery AF, DeLateur BJ, et al. Local muscle blood flow and temperature responses to 915MHz diathermy as simultaneously measured and numerically predicted. Arch Phys Med Rehabil. 1984;65(1):1–7.

    CAS  PubMed  Google Scholar 

  49. Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984;44(S10):4721.

    Google Scholar 

  50. Giombini A, Giovannini V, Di Cesare A, Pacetti P, Ichinoseki-Sekine N, Shiraishi M, et al. Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. Br Med Bull. 2007;83(1):379–96.

    CAS  CrossRef  PubMed  Google Scholar 

  51. Akyürekli D, Gerig LH, Raaphorst GP. Changes in muscle blood flow distribution during hyperthermia. Int J Hyperth. 1997;13(5):481–96.

    CrossRef  Google Scholar 

  52. Okada K, Yamaguchi T, Minowa K, Inoue N. The influence of hot pack therapy on the blood flow in masseter muscles. J Oral Rehabil. 2005;32(7):480–6.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Keller DM, Sander M, Stallknecht B, Crandall CG. α-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg. J Physiol. 2010;588(19):3799–808.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Binzoni T, Tchernin D, Richiardi J, Van De Ville D, Hyacinthe J-N. Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry. Physiol Meas. 2012;33(7):1181–97.

    CrossRef  PubMed  Google Scholar 

  55. Chiesa ST, Trangmar SJ, Kalsi KK, Rakobowchuk M, Banker DS, Lotlikar MD, et al. Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human during rest and small muscle mass exercise. Am J Physiol Circ Physiol. 2015;309:H369–80.

    CAS  CrossRef  Google Scholar 

  56. Heinonen I, Brothers RM, Kemppainen J, Knuuti J, Kalliokoski KK, Crandall CG. Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow. J Appl Physiol. 2011;111(3):818–24.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Ives SJ, Andtbacka RH, Kwon SH, Shiu YT, Ruan T, Noyes RD, et al. Heat and alpha1-adrenergic responsiveness in human skeletal muscle feed arteries: the role of nitric oxide. J Appl Physiol. 2012;113(11):1690–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Kalsi KK, González-Alonso J. Temperature-dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion. Exp Physiol. 2012;97(3):419–32.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Ives SJ, Andtbacka RHI, Noyes RD, McDaniel J, Amann M, Witman MAH, et al. Human skeletal muscle feed arteries studied in vitro: the effect of temperature on α1-adrenergic responsiveness. Exp Physiol. 2011;96(9):907–18.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Heinonen I, Wendelin-Saarenhovi M, Kaskinoro K, Knuuti J, Scheinin M, Kalliokoski KK. Inhibition of alpha-adrenergic tone disturbs the distribution of blood flow in the exercising human limb. Am J Physiol Circ Physiol. 2013;305(2):H163–72.

    CAS  CrossRef  Google Scholar 

  61. Kluess HA, Buckwalter JB, Hamann JJ, Clifford PS. Elevated temperature decreases sensitivity of P2X purinergic receptors in skeletal muscle arteries. J Appl Physiol. 2005;99(3):995–8.

    CAS  CrossRef  PubMed  Google Scholar 

  62. Fujii N, McGinn R, Halili L, Singh MS, Kondo N, Kenny GP. Cutaneous vascular and sweating responses to intradermal administration of ATP: a role for nitric oxide synthase and cyclooxygenase? J Physiol. 2015;593(11):2515–25.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  63. González-Alonso J, Olsen DB, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery role of circulating ATP. Circ Res. 2002;91(11):1046–55.

    CrossRef  PubMed  Google Scholar 

  64. González-Alonso J, Mortensen SP, Jeppesen TD, Ali L, Barker H, Damsgaard R, et al. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function. J Physiol. 2008;586(9):2405–17.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosenmeier JB, Hansen J, González-Alonso J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol. 2004;558(1):351–65.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Rosenmeier JB, Yegutkin GG, González-Alonso J. Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle. J Physiol. 2008;586(20):4993–5002.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. González-Alonso J, Calbet JAL, Boushel R, Helge JW, Søndergaard H, Munch-Andersen T, et al. Blood temperature and perfusion to exercising and non-exercising human limbs. Exp Physiol. 2015;100(10):1118–31.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rowell LB, Detry JR, Profant GR, Wyss C. Splanchnic vasoconstriction in hyperthermic man--role of falling blood pressure. J Appl Physiol. 1971;31(6):864–9.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Bain AR, Smith KJ, Lewis NC, Foster GE, Wildfong KW, Willie CK, et al. Regional changes in brain blood flow during severe passive hyperthermia: effects of PaCO2 and extracranial blood flow. J Appl Physiol. 2013;115(5):653–9.

    CrossRef  PubMed  Google Scholar 

  70. Willie CK, Tzeng Y-C, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Miyazawa T, Horiuchi M, Ichikawa D, Subudhi AW, Sugawara J, Ogoh S. Face cooling with mist water increases cerebral blood flow during exercise: effect of changes in facial skin blood flow. Front Physiol. 2012;3:308.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  72. González-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824–30.

    CrossRef  PubMed  Google Scholar 

  73. González-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol. 2004;557(1):331–42.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trangmar SJ, González-Alonso J. New insights into the impact of dehydration on blood flow and metabolism during exercise. Exerc Sport Sci Rev. 2017;45(3):146–53.

    CrossRef  PubMed  Google Scholar 

  75. González-Alonso J, Quistorff B, Krustrup P, Bangsbo J, Saltin B. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol. 2000;524(2):603–15.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Nybo L, Nielsen B. Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol. 2001;534(1):279–86.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Fujii N, Honda Y, Hayashi K, Soya H, Kondo N, Nishiyasu T. Comparison of hyperthermic hyperpnea elicited during rest and submaximal, moderate-intensity exercise. J Appl Physiol. 2008;104(4):998–1005.

    CrossRef  PubMed  Google Scholar 

  78. Hayashi K, Honda Y, Ogawa T, Kondo N, Nishiyasu T. Relationship between ventilatory response and body temperature during prolonged submaximal exercise. J Appl Physiol. 2006;100(2):414–20.

    CrossRef  PubMed  Google Scholar 

  79. Keiser S, Flück D, Stravs A, Hüppin F, Lundby C. Restoring heat stress-associated reduction in middle cerebral artery velocity does not reduce fatigue in the heat. Scand J Med Sci Sports. 2015;25(1):145–53.

    CrossRef  PubMed  Google Scholar 

  80. Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2(1):743–77.

    PubMed  Google Scholar 

  81. Ferguson RA, Krustrup P, Kjaer M, Mohr M, Ball D, Bangsbo J. Effect of temperature on skeletal muscle energy turnover during dynamic knee-extensor exercise in humans. J Appl Physiol. 2006;101(1):47–52.

    CAS  CrossRef  PubMed  Google Scholar 

  82. Nielsen B, Savard G, Richter EA, Hargreaves M, Saltin B. Muscle blood flow and muscle metabolism during exercise and heat stress. J Appl Physiol. 1990;69(3):1040–6.

    CAS  CrossRef  PubMed  Google Scholar 

  83. Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol. 1993;460(1):467–85.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Nielsen B, Strange S, Christensen NJ, Warberg J, Saltin B. Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflugers Arch - Eur J Physiol. 1997;434(1):49–56.

    CAS  CrossRef  Google Scholar 

  85. Trangmar SJ, Chiesa ST, Kalsi KK, Secher NH, González-Alonso J. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Physiol Rep. 2017;5(1):e13108.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kellogg DL, Johnson JM, Kenney WL, Pergola PE, Kosiba WA. Mechanisms of control of skin blood flow during prolonged exercise in humans. Am J Physiol Circ Physiol. 1993;265(2):562–8.

    CrossRef  Google Scholar 

  87. Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol. 2006;100:1692–701.

    CrossRef  PubMed  Google Scholar 

  88. González-Alonso J, Calbet JA, Nielsen B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol. 1999;520:577–89.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  89. Calbet JA, González-Alonso J, Helge JW, Sondergaard H, Munch-Andersen T, Boushel R, et al. Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol. 2007;103(3):969–78.

    CrossRef  PubMed  Google Scholar 

  90. González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):1032–9.

    CrossRef  PubMed  Google Scholar 

  91. Nybo L, Møller K, Volianitis S, Nielsen B, Secher NH, Moller K, et al. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol. 2002;93(1):58–64.

    CrossRef  PubMed  Google Scholar 

  92. Rowell LB. Human circulation: regulation during physical stress. Oxford: Oxford University Press; 1986. p. 416.

    Google Scholar 

  93. Rowell LB. Cardiovascular adjustments to thermal stress. Comprehensive physiology. Hoboken: Wiley; 2011.

    Google Scholar 

  94. Trinity JD, Pahnke MD, Lee JF, Coyle EF. Interaction of hyperthermia and heart rate on stroke. J Appl Physiol. 2011;111(3):891–7.

    CrossRef  Google Scholar 

  95. Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab. 1997;17(1):64–72.

    CAS  CrossRef  PubMed  Google Scholar 

  96. Secher NH, Seifert T, Van Lieshout JJ. Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol. 2008;104(1):306–14.

    CAS  CrossRef  PubMed  Google Scholar 

  97. Hellstrom G, Fischer-Colbrie W, Wahlgren NG, Jogestrand T. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol. 1996;81(1):413–8.

    CAS  CrossRef  PubMed  Google Scholar 

  98. Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol. 2011;589(11):2847–56.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  99. Trangmar SJ, Chiesa ST, Stock CG, Kalsi KK, Secher NH, González-Alonso J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J Physiol. 2014;592(14):3143–60.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  100. Trangmar SJ, Chiesa ST, Llodio I, Garcia B, Kalsi KK, Secher NH, et al. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism. Am J Physiol Heart Circ Physiol. 2015;309(9):H1598–607.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  101. Périard JD, Racinais S. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise. Scand J Med Sci Sports. 2015;25(S1):135–44.

    CrossRef  PubMed  Google Scholar 

  102. Moraine JJ, Lamotte M, Berré J, Niset G, Leduc A, Naeijel R. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol. 1993;67(1):35–8.

    CAS  CrossRef  PubMed  Google Scholar 

  103. Sato K, Oue A, Yoneya M, Sadamoto T, Ogoh S. Heat stress redistributes blood flow in the arteries of the brain during dynamic exercise. J Appl Physiol. 2016;120(7):766–73.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Chiesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chiesa, S.T., Trangmar, S.J., Watanabe, K., González-Alonso, J. (2019). Integrative Human Cardiovascular Responses to Hyperthermia. In: Périard, J., Racinais, S. (eds) Heat Stress in Sport and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-93515-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93515-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93514-0

  • Online ISBN: 978-3-319-93515-7

  • eBook Packages: MedicineMedicine (R0)