Skip to main content

The Biophysics of Human Heat Exchange

  • Chapter
  • First Online:
Heat Stress in Sport and Exercise

Abstract

This chapter describes the fundamental factors that influence heat exchange between the human body and its surrounding environment. The bulk of heat exchange takes place at the skin surface via sensible heat transfer (i.e. convection and radiation) and evaporation. With increasing ambient temperature, the gradient for sensible heat transfer declines, meaning that the human body becomes increasingly dependent on the evaporation of sweat for heat dissipation. If the combination of climate (air temperature, radiant temperature, humidity and air velocity) and clothing permit a sufficient level of heat dissipation to counterbalance the rate of internal heat production, elevations in core temperature are moderated (i.e. compensable heat stress). However, if heat production exceeds the upper capacity to lose heat from the skin surface due to high ambient temperatures, humidity, low wind speeds or high evaporative resistance of clothing, a continuous increase in core temperature occurs (i.e. uncompensable heat stress).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edwards RH, Ekelund LG, Harris RC, Hesser CM, Hultman E, Melcher A, Wigertz O. Cardiorespiratory and metabolic costs of continuous and intermittent exercise in man. J Physiol. 1973;234(2):481–97.

    CAS  Google Scholar 

  2. Gladden LB, Welch HG. Efficiency of anaerobic work. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(4):564–70.

    CAS  Google Scholar 

  3. Wasserman K, Van Kessel AL, Burton GG. Interaction of physiological mechanisms during exercise. J Appl Physiol. 1967;22(1):71–85.

    CAS  Google Scholar 

  4. Whipp BJ, Wasserman K. Efficiency of muscular work. J Appl Physiol. 1969;26(5):644–8.

    CAS  Google Scholar 

  5. Margaria R. Positive and negative work performances and their efficiencies in human locomotion. Int Z Angew Physiol. 1968;25:339–51.

    CAS  Google Scholar 

  6. Snellen JW. External work in level and grade walking on a motor-driven treadmill. J Appl Physiol. 1960;15(5):759–63.

    Google Scholar 

  7. Nishi Y. Measurement of thermal balance in man. In: Bioengineering, thermal physiology and comfort. New York: Elsevier; 1981.

    Google Scholar 

  8. Du Bois D, Du Bois EF. A formula to estimate surface area if height and weight are known. Arch Intern Med. 1916;5:303–11.

    Google Scholar 

  9. Fanger PO. Calculation of thermal comfort: introduction of a basic comfort equation. ASHRAE Trans. 1967;73:III4.1.

    Google Scholar 

  10. International Organisation for Standardisation. Ergonomics of the thermal environment. Instruments for measuring physical quantities. ISO 7726:1998, Geneva, 1998.

    Google Scholar 

  11. Parsons K. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. 2nd ed. New York: CRC Press; 2002.

    Google Scholar 

  12. Mitchell D. Convective heat loss from man and other animals. In: Convective heat loss from man and other animals. London: Butterworths; 1974.

    Google Scholar 

  13. Deren TM, Coris EE, Casa DJ, DeMartini JK, Bain AR, Walz SM, Jay O. Maximum heat loss potential is lower in football linemen during an NCAA summer training camp because of lower self-generated air flow. J Strength Cond Res. 2014;28(6):1656–63.

    Google Scholar 

  14. Godek SF, Bartolozzi AR, Godek JJ. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br J Sports Med. 2005;39(4):205–11.

    Google Scholar 

  15. Defraeye T, Blocken B, Koninckx E, Hespel P, Carmeliet J. Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions. J Biomech. 2011;44(9):1695–701.

    Google Scholar 

  16. Nishi Y, Gagge AP. Direct evaluation of convective heat transfer coefficient by naphthalene sublimation. J Appl Physiol. 1970;29(6):830–8.

    CAS  Google Scholar 

  17. Gagge APN, Nishi Y. Heat exchange between human skin surface and thermal environment. In: A. C. Society, editor. Comprehensive physiology. Hoboken: Wiley; 1977. p. 69–92.

    Google Scholar 

  18. McCullough EA, Jones EW, Huck J. A comprehensive database for estimating clothing insulation. ASHRAE Trans U S. 1985;91:29–47.

    Google Scholar 

  19. International Organisation for Standardisation. Ergonomics of the thermal environment - estimation of thermal insulation and water vapour resistance of a clothing ensemble. ISO 9920:2007 Geneva, 2004.

    Google Scholar 

  20. Nadel ER, Holmer I, Bergh U, Astrand PO, Stolwijk JA. Energy exchanges of swimming man. J Appl Physiol. 1974;36(4):465–71.

    CAS  Google Scholar 

  21. Lemmon EWH. Thermophysical properties of water and steam. In: Handbook of chemistry and physics. New York: CRC Press; 2015. p. 1–3.

    Google Scholar 

  22. Brandt RA, Pichowsky MA. Conservation of energy in competitive swimming. J Biomech. 1995;28(8):925–33.

    CAS  Google Scholar 

  23. Mc CJ, Taylor CL. Respiratory heart exchange with varying temperature and humidity of inspired air. J Appl Physiol. 1951;4(2):121–35.

    Google Scholar 

  24. Walker JE, Wells RE Jr, Merrill EW. Heat and water exchange in the respiratory tract. Am J Med. 1961;30:259–67.

    CAS  Google Scholar 

  25. Brebbia DR, Goldman RF, Buskirk ER. Water vapor loss from the respiratory tract during outdoor exercise in the cold. J Appl Physiol. 1957;11(2):219–22.

    CAS  Google Scholar 

  26. Mitchell JW, Nadel ER, Stolwijk JA. Respiratory weight losses during exercise. J Appl Physiol. 1972;32(4):474–6.

    CAS  Google Scholar 

  27. Nielsen M. Die regulation der körpertemperatur bei muskelarbeit. Skand Arch Physiol. 1938;79:193–230.

    Google Scholar 

  28. Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol. 1972;32(4):456–9.

    CAS  Google Scholar 

  29. Bain AR, Lesperance NC, Jay O. Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. Acta Physiol. 2012;206(2):98–108.

    CAS  Google Scholar 

  30. Snellen JW, Chang KS, Smith W. Technical description and performance characteristics of a human whole-body calorimeter. Med Biol Eng Comput. 1983;21(1):9–20.

    CAS  Google Scholar 

  31. Reardon FD, Leppik KE, Wegmann R, Webb P, Ducharme MB, Kenny GP. The Snellen human calorimeter revisited, re-engineered and upgraded: design and performance characteristics. Med Biol Eng Comput. 2006;44(8):721–8.

    Google Scholar 

  32. Alber-Wallerstrom B, Holmer I. Efficiency of sweat evaporation in unacclimatized man working in a hot humid environment. Eur J Appl Physiol Occup Physiol. 1985;54(5):480–7.

    CAS  Google Scholar 

  33. Candas V, Libert JP, Vogt JJ. Human skin wettedness and evaporative efficiency of sweating. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(3):522–8.

    CAS  Google Scholar 

  34. Givoni B. Man, climate and architecture. London: Applied Science Publ.; 1976.

    Google Scholar 

  35. Gagge AP. A new physiological variable associated with sensible and insensible perspiration. Am J Phys. 1937:277–87.

    Google Scholar 

  36. Candas V, Libert JP, Vogt JJ. Influence of air velocity and heat acclimation on human skin wettedness and sweating efficiency. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(6):1194–200.

    CAS  Google Scholar 

  37. Ravanelli N, Coombs GB, Imbeault P, Jay O. Maximum skin wettedness after aerobic training with and without heat acclimation. Med Sci Sports Exerc. 2018;50(2):299–307.

    Google Scholar 

  38. Thomson GW. The Antoine equation for vapor-pressure data. Chem Rev. 1946;38:1–39.

    CAS  Google Scholar 

  39. International Organisation for Standardisation. Ergonomics of the thermal environment; Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. ISO 7933:2004, Geneva, 2004.

    Google Scholar 

  40. Havenith G, Brode P, den Hartog E, Kuklane K, Holmer I, Rossi RM, Richards M, Farnworth B, Wang XX. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol. 2013;114(6):778–85.

    Google Scholar 

  41. Cramer MN, Jay O. Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area. J Appl Physiol. 2014;116(9):1123–32.

    Google Scholar 

  42. Ravanelli N, Cramer M, Imbeault P, Jay O. The optimal exercise intensity for the unbiased comparison of thermoregulatory responses between groups unmatched for body size during uncompensable heat stress. Physiol Rep. 2017;5(5):e13099.

    Google Scholar 

  43. Geddes LA. The specific resistance of biological material - a compendium of data for the biomedical engineer and physiologist. Med Biol Eng. 1967;5:271–93.

    CAS  Google Scholar 

  44. Dervis S, Coombs GB, Chaseling GK, Filingeri D, Smoljanic J, Jay O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J Appl Physiol. 2016;120(6):615–23.

    CAS  Google Scholar 

  45. Hammel HT. Regulation of internal body temperature. Annu Rev Physiol. 1968;30:641–710.

    CAS  Google Scholar 

  46. Hammel HT, Jackson DC, Stolwijk JA, Hardy JD, Stromme SB. Temperature regulation by hypothalamic proportional control with an adjustable set point. J Appl Physiol. 1963;18:1146–54.

    CAS  Google Scholar 

  47. Werner J. System properties, feedback control and effector coordination of human temperature regulation. Eur J Appl Physiol. 2010;109(1):13–25.

    Google Scholar 

  48. Bierman W. The temperature of the skin surface. J Am Med Assoc. 1936;106:1158–62.

    Google Scholar 

  49. Gagnon D, Jay O, Kenny GP. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J Physiol. 2013;591(11):2925–35.

    CAS  Google Scholar 

  50. Werner J. Control aspects of human temperature regulation. Automatica. 1981;17(2):351–62.

    Google Scholar 

  51. Cabanac M. Regulation and modulation in biology - a reexamination of temperature regulation. Ann N Y Acad Sci. 1997;813:21–31.

    CAS  Google Scholar 

  52. Cabanac M. Adjustable set point: to honor Harold T. Hammel. J Appl Physiol. 2006;100(4):1338–46.

    Google Scholar 

  53. Jessen C. Interaction of body temperatures in control of thermoregulatory effector mechanisms. In: Comprehensive physiology. Hoboken: Wiley; 1996. p. 127–38.

    Google Scholar 

  54. Eyolfson DA, Tikuisis P, Xu X, Weseen G, Giesbrecht GG. Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol. 2001;84(1-2):100–6.

    CAS  Google Scholar 

  55. Benzinger TH. Heat regulation: homeostasis of central temperature in man. Physiol Rev. 1969;49(4):671–759.

    CAS  Google Scholar 

  56. Euler v. Physiology and pharmacology of temperature regulation. Pharmacol Rev. 1961;13:361–98.

    Google Scholar 

  57. Meigal AY, Oksa J, Gerasimova LI, Hohtola E, Lupandin YV, Rintamaki H. Force control of isometric elbow flexion with visual feedback in cold with and without shivering. Aviat Space Environ Med. 2003;74(8):816–21.

    Google Scholar 

  58. Meigal AY, Oksa J, Hohtola E, Lupandin YV, Rintamaki H. Influence of cold shivering on fine motor control in the upper limb. Acta Physiol Scand. 1998;163(1):41–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ollie Jay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravanelli, N., Bongers, C.C.W.G., Jay, O. (2019). The Biophysics of Human Heat Exchange. In: Périard, J., Racinais, S. (eds) Heat Stress in Sport and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-93515-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93515-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93514-0

  • Online ISBN: 978-3-319-93515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics