Skip to main content

Neuropsychological Considerations for Parkinson’s Disease Patients Being Considered for Surgical Intervention with Deep Brain Stimulation

  • Chapter
  • First Online:
Handbook on the Neuropsychology of Aging and Dementia

Part of the book series: Clinical Handbooks in Neuropsychology ((CHNEURO))

  • 4640 Accesses

Abstract

In addition to their motor symptoms, patients diagnosed with idiopathic Parkinson’s disease (PD) often exhibit a subcortical pattern of cognitive impairment. Deep brain stimulation (DBS) is one of the treatments used to improve motor functioning in PD patients; however, studies focusing on the effects of DBS on cognition, mood, and behavior have produced mixed findings. This chapter reviews the history of various treatments for PD, the recent literature regarding DBS, and the neuropsychological outcomes in patients who undergo such surgery for the treatment of parkinsonian motor symptoms. DBS as a treatment for several other neurologic and psychiatric disorders is also discussed. In addition, case examples and recommendations for the neuropsychologist are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woods SP, Fields JA, Troster AI. Neuropsychological sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a critical review. Neuropsychol Rev. 2002;12:111–26.

    Article  Google Scholar 

  2. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707.

    Article  Google Scholar 

  3. Pallone JA. Introduction to Parkinson’s disease. Disease-A-Month. 2007;53:195–9.

    Article  Google Scholar 

  4. Olanow CW, Stern MB. Parkinson’s disease: unresolved issues. Ann Neurol. 2008;64:S1–2.

    Article  Google Scholar 

  5. Rosenthal A. Auto transplants for Parkinson’s disease? Neuron. 1998;20:169–72.

    Article  Google Scholar 

  6. Rothstein TL, Olanow CW. The neglected side of Parkinson’s disease. Am Sci. 2008;96:218–25.

    Article  Google Scholar 

  7. Youdim MB, Riederer P. Understanding Parkinson’s disease. Sci Am. 1997;1:52–9.

    Article  Google Scholar 

  8. DeLong M, Wichmann T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord. 2009;15:S239–40.

    Article  Google Scholar 

  9. Torres G, Fraley GS, Hallas BH, Leheste JR, Phillippens I. New frontiers in Parkinson’s disease therapy: deep brain stimulation. Kopf Carrier. 2010;69:1–8. Retrieved from http://www.kopfinstruments.com/Carrier/downlaod/carrier69.pdf

    Google Scholar 

  10. Fernandez HH, See RH, Gary MF, Bowers D, Rodriguez RL, Jacobson C, Okun MS. Depressive symptoms in Parkinson disease correlate with impaired global and specific cognitive performance. J Geriatr Psychiatry Neurol. 2009;22:223–7.

    Article  Google Scholar 

  11. Cozzens JW. Surgery for Parkinson’s disease. Disease-A-Month. 2007;53:227–42.

    Article  Google Scholar 

  12. Henderson JM, Dunnett SB. Targeting the subthalamic nucleus in the treatment of Parkinson’s disease. Brain Res Bull. 1998;46:467–74.

    Article  Google Scholar 

  13. Pollak P, Benabid AL, Gross C, Gao DM, Laurent A, Benazzouz A, Hoffmann D, Gentil M, Perret J. Effects of the stimulation of the subthalamic nucleus in Parkinson’s disease. Rev Neurol. 1993;149:175–6.

    Google Scholar 

  14. Fahn S. How do you treat motor complications in Parkinson’s disease: Medicine, surgery, or both? Ann Neurol. 2008;64:S56–64.

    Article  Google Scholar 

  15. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123:2297–305.

    Article  Google Scholar 

  16. Fox SH, Brotchie JM, Lang AE. Non-dopaminergic treatments in development for Parkinson’s disease. Lancet Neurol. 2008;7:927–38.

    Article  Google Scholar 

  17. Rezai AR, Machado AG, Deogaonkar M, Azmi H, Kubu C, Boulis NM, et al. Surgery for movement disorders. Neurosurgery. 2008;62:S809–39.

    Article  Google Scholar 

  18. Espay AJ, Mandybur GT, Revilla FJ. Surgical treatment of movement disorders. Clin Geriatr Med. 2006;22:813–25.

    Article  Google Scholar 

  19. Gildernberg PL. Management of movement disorders. An overview. Neurosurg Clin N Am. 1995;6:43–53.

    Article  Google Scholar 

  20. Fields JA, Troster A. Cognitive outcomes after deep brain stimulation for Parkinson’s disease: a review of initial studies and recommendations for future research. Brain Cogn. 2000;42:268–93.

    Article  Google Scholar 

  21. Cooper O, Astradsson A, Hallett P, Robertson H, Mendez I, Isacson O. Lack of functional relevance of isolated cell damage in transplants of Parkinson’s disease patients. J Neurol. 2009;256:S310–6.

    Article  Google Scholar 

  22. Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci. 1996;19:102–9.

    Article  Google Scholar 

  23. Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH, Gjedde A, Bunney BS, Sass KJ, Elsworth JD, Kier L, Majuch R, Hoffer PB, Redmond DE. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med. 1992;327:1541–8.

    Article  Google Scholar 

  24. Olanow CW, Fahn S. Fetal nigral transplantation as a therapy for Parkinson’s disease. In: Brundin P, Olanow CW, editors. Restorative therapist in Parkinson’s disease. New York, NY: Springer Science + Business Media, LLC; 2006. p. 93–118.

    Chapter  Google Scholar 

  25. Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, Freed C, Dhawan V, Eidelberg D. Dopamine cell implantation in Parkinson’s disease: Long-term clinical and18F-FDOPA PET outcomes. J Nucl Med. 2010;51:7–15.

    Article  Google Scholar 

  26. Trott CT, Fahn S, Greene P, Dillon S, Winfield H, Winfield L, Kao R, Eidelberg D, Freed CR, Breeze RE, Stern Y. Cognition following bilateral implants of embryonic dopamine neurons in PD: a double blind study. Neurology. 2003;60(12):1938–43.

    Article  Google Scholar 

  27. Barker RA, Drouin-Ouellet J, Parmar M. Cell-based therapies for Parkinson’s disease – past insights and future potential. Nat. Rev. Neurol. 2015;11:492–503.

    Article  Google Scholar 

  28. GForce-PD [online], http://www.gforce-pd.com/ (2015).

  29. Kaplitt MG, Feigin A, Tang C, Fitzsimons H, Mattis P, Lawlor PA, Bland RJ, Young B, Strybing K, Eidelberg D, During MJ. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369:2097–105.

    Article  Google Scholar 

  30. Mattis P, Zgaljardic D, Feigin A. Neuropsychological functioning in pre-symptomatic but gene positive patients with Huntington’s disease. J Int Neuropsychol Soc. 2002;8:276.

    Google Scholar 

  31. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Marcias R, Alvarez L, Guridi J, Vitek J, Delong MR. Pathophysiologic basis of surgery for Parkinson’s disease. Neurology. 2000;55:S7–S12.

    Google Scholar 

  32. Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci. 2003;991:199–213.

    Article  Google Scholar 

  33. Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7:91–100.

    Article  Google Scholar 

  34. Emborg ME, Carbon M, Holdern JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons J, Roitberg BZ, Tuccar E, Roberts A, Kaplitt MG, Eidelberg D. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab. 2007;27:501–9.

    Article  Google Scholar 

  35. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, During MJ. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994;8:148–54.

    Article  Google Scholar 

  36. Lee B, Lee H, Nam YR, Oh JH, Cho YH, Chang JW. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther. 2005;12:1215–22.

    Article  Google Scholar 

  37. Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, During MJ. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science. 2002;298:425–9.

    Article  Google Scholar 

  38. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10:309–19.

    Article  Google Scholar 

  39. Kprdower JH. 2014. Gene Therapy for Parkinson’s disease: Still a hot topic? Neuropsychopharmacology. 2014;40(1):255–6.

    Article  Google Scholar 

  40. Buttery PC, Barker RA. Treating Parkinson’s disease in the 21st century: Can stem cell transplantation compete? J Comp Neurol. 2014a;522(12):2802–16.

    Article  Google Scholar 

  41. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012;23:377–81.

    Article  Google Scholar 

  42. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ. 2009. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology. 2009;73:1662–9.

    Article  Google Scholar 

  43. Dormont D, Seidenwurm D, Galanaud D, Cornu P, Yelnik J, Bardinet E. Neuroimaging and deep brain stimulation. Am J Neuroradiol. 2010;31:15–23.

    Article  Google Scholar 

  44. Benabid AL, Chabardes S, Seigneuret E. Deep-brain stimulation in Parkinson’s disease: long-term efficacy and safety—What happened this year? Curr Opin Neurol. 2005;18:623–30.

    Article  Google Scholar 

  45. Okun MS, Rodriguez RL, Miller AMK, Kellison I, Kirsch-Darrow L, Wint DP, Springer U, Fernandez HH, Foote KD, Crucian G, Bowers D. Deep brain stimulation and the role of the neuropsychologist. Clin Neuropsychol. 2007;21:162–89.

    Article  Google Scholar 

  46. Vitek JL. Deep brain stimulation: how does it work? Cleveland Clinical J Med. 2008;75:S59–65.

    Article  Google Scholar 

  47. Pourfar M, Tang C, Lin T, Dhawan V, Kaplitt MG, Eidelberg D. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. J Neurosurg. 2009;110:1278–82.

    Article  Google Scholar 

  48. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, Kaplitt MG, Feigin A, Eidelberg D. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129:2667–78.

    Article  Google Scholar 

  49. Chang J. Brain Stimulation for neurological and psychiatric disorders, current status and future direction. J Pharmacol Exp Ther. 2004;309:1–7.

    Article  Google Scholar 

  50. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ. “Rejuvenation” projects neurons in mouse models of Parkinson’s disease. Nature. 2007;447:1081–5.

    Article  Google Scholar 

  51. Histed MH, Bonin V, Reid RC. Direct activation of sparse, distributed populations of cortical neurons by electrical micro-stimulation. Neuron. 2009;63:508–22.

    Article  Google Scholar 

  52. Vanegas-Arroyave N, Lauro PM, Huang L, Hallett M, Horovitz SG, Zaghloul KA, Lungu C. Tractography patterns of subthalamic nucleus deep brain stimulation. Brain. 2016;139:1200–10.

    Article  Google Scholar 

  53. Volkmann J, Allert N, Voges J, Sturn V, Schnitzler A, Freund H. Long term results of bilateral pallidal stimulation in Parkinson’s disease. Ann Neurol. 2004;55:871–5.

    Article  Google Scholar 

  54. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ. CSP 468 Study Group. N Engl J Med. 2010;362(22):2077–91.

    Article  Google Scholar 

  55. Sako W, Miyazaki Y, Izumi Y, Kaji R. Which target is best for patients with Parkinson’s disease? A meta-analysis of pallidal and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2014;85(9):982–6.

    Article  Google Scholar 

  56. Jiang L-L, Liu J-L, Fu X-L, Xian WB, Gu J, Liu YM, Ye J, Chen J, Qian H, Xu S-H, Pei Z, Chen L. Long-term efficacy of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a 5-year follow-up study in China. Chin Med J(Engl). 2015;128(18):2433–8.

    Google Scholar 

  57. Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, Benabid A. Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord. 2006;21:S247–58.

    Article  Google Scholar 

  58. Schweder PM, Hansen PC, Green AL, Quaghebeur G, Stein J, Aziz TZ. Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. NeuroReport: For Rapid Communication of Neuroscience Research, vol. 21; 2010. p. 914–6.

    Google Scholar 

  59. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130(6):1596–607.

    Article  Google Scholar 

  60. Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, Wachter T, Kruger R. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain. 2013;136(7):2098–108.

    Article  Google Scholar 

  61. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129:1732–47.

    Article  Google Scholar 

  62. Fang JY, Tolleson C. The role of deep brain stimulation in Parkinson’s disease: An overview and update on new improvements. Neuropsychiatr Dis Treat. 2017;13:723–32.

    Article  Google Scholar 

  63. Rossi MA, Calakos N, Yin HH. Spotlight on Movement Disorders: What optogenetics has to offer. Mov Disord. 2015;30(5):624–31.

    Article  Google Scholar 

  64. Abosch A, Lanctin D, Onaran I, Eberly L, Spaniol M, Ince NF. Long-term recordings of local field potentials from implanted deep brain stimulation electrodes. Neurosurgery. 2012;71(4):804–14.

    Article  Google Scholar 

  65. Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann N Y Acad Sci. 2012;1265:9–24.

    Article  Google Scholar 

  66. Little S, Pogosyan A. Neal GEng (Hons) S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, Fitzgerald J, Green A, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.

    Article  Google Scholar 

  67. Tinkhauser G, Pogosyan A, Little S, Beudel M, Herz DM, Tan H, Brown P. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053–67.

    Article  Google Scholar 

  68. Morrison CE, Borod JC, Perrine K, Beric A, Brin MF, Rezai A, Kelly P, Sterio D, Germano I, Weisz D, Olanow CW. Neuropsychological functioning following bilateral subthalamic nucleus stimulation in Parkinson’s disease. Arch Clin Neuropsychol. 2002;19:165–81.

    Article  Google Scholar 

  69. St George RJ, Nutt JG, Burchiel KJ, Horak FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 2010;75:1292–9.

    Article  Google Scholar 

  70. Moro E, Scerrati M, Romito LMA, Roselli R, Tonali P, Albanese A. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology. 1999;53:85–90.

    Article  Google Scholar 

  71. Moro E, Hamani C, Poon Y, Al-Khairallah T, Dostrovsky JO, Hutchinson WD, Lozano AM. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. 2010;133:215–24.

    Article  Google Scholar 

  72. Schupbach WMM, Chastan N, Welter ML, Houeto JL, Mesnage V, Bonnet AM, Czernecki V, Maltete D, Hartmann A, Mallet L, Pidoux B, Dormont D, Navarro S, Cornu P, Mallet A, Agid Y. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry. 2005;76:1650–44.

    Article  Google Scholar 

  73. Parsons TD, Rogers SA, Broaten AJ, Woods SP, Troster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 2006;5:578–88.

    Article  Google Scholar 

  74. Jahanshahi M, Ardouin CMA, Brown RG, Rothwell JC, Obeso J, Albanese A, Rodriguez-Oroz MC, Moro E, Benabid AL, Pollak P, Lomousin-Dowsey P. The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain. 2000;123:1142–54.

    Article  Google Scholar 

  75. Houvenaghel JF, Le Jeune F, Dondaine T, Esquevin A, Robert GH, Peron J, Haegelen C, Drapier S, Jannin P, Lozachmeur C, Argaud S, Duprez J, Drapier D, Verin M, Sauleau P. Reduced verbal fluency following subthalamic deep brain stimulation: A frontal-related cognitive deficit? PLoS ONE. 2015;10(10):e0140083.

    Article  Google Scholar 

  76. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123:2091–108.

    Article  Google Scholar 

  77. Ashby P, Kim YJ, Kumar R, Lang AE, Lozano AM. Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain. 1999;122:1919–31.

    Article  Google Scholar 

  78. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, Suelter M, Jacobson CE 4th, Wang X, Gordon CW Jr, Zeilman P, Romrell J, Martin P, Ward H, Rodriguez RL, Foote KD. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65(5):586–95.

    Article  Google Scholar 

  79. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, Alterman R, Jankovic J, Simpson R, Junn F, Verhagen L, Arle JE, Ford B, Goodman RR, Stewart RM, Horn S, Baltuch GH, Kopell BH, Marshall F, Peichel D, Pahwa R, Lyons KE, Al T, Vitek JL, Tagliati M. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11(2):140–9.

    Article  Google Scholar 

  80. Dujardin K, Defebvre L, Krystkowiak P, Blond S, Destee A. Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol. 2001;248:603–11.

    Article  Google Scholar 

  81. Pillon B, Ardouin C, Damier P, Krack P, Houeto JL, Klinger H, Bonnet AM, Pollak P, Benabid AL, Agid Y. Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology. 2000;55:411–8.

    Article  Google Scholar 

  82. Houvenaghel JF, Duprez J, Argaud S, Naudet F, Dondaine T, Robert GH, Drapier S, Haegelen C, Jannin P, Drapier D, Verin M, Sauleau P. Influence of subthalamic deep-brain stimulation on cognitive action control in incentive context. Neuropsychologia. 2016;91:519–30.

    Article  Google Scholar 

  83. York MK, Dulay M, Macias A, Levin HS, Grossman R, Simpson R, Jankovic J. Cognitive declines following bilateral subthalamic nucleus deep brain stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79:789–95.

    Article  Google Scholar 

  84. Perriol MP, Krystkowiak P, Defebvre L, Blond S, Destee A, Dujardin K. Stimulation of the subthalamic nucleus in Parkinson’s disease: Cognitive and affective changes are not linked to the motor outcome. Parkinsoniam Relat Disord. 2006;12:205–10.

    Article  Google Scholar 

  85. Hariz MI, Johansson F, Shamsgovara P, Johansson E, Hariz GM, Fagerlund M. Bilateral subthalamic nucleus stimulation in parkinsonian patient with preoperative deficits in speech and cognition: Persistent improvement in mobility but increased dependency: A case study. Mov Disord. 2000;15:136–9.

    Article  Google Scholar 

  86. Trepanier LL, Kumar R, Lozano AM, Lang AE, Saint-Cyr JA. Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson’s disease. Brain Cogn. 2000;42:324–47.

    Article  Google Scholar 

  87. Perozzo P, Rizzone M, Bergamasco B, Castelli L, Lanotte M, Tavella A, Torre E, Lopiano L. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: comparison of pre- and postoperative neuropsychological evaluation. J Neurol Sci. 2001;192:9–15.

    Article  Google Scholar 

  88. Smeding HMM, Speelman JD, Koning-Haanstra M, Schuurman PR, Nijssen P, Van Laar T, Schmand B. Neuropsychological effects of bilateral STN stimulation in Parkinson’s disease: a controlled study. Neurology. 2006;66:1830–6.

    Article  Google Scholar 

  89. Funkiewiez A, Ardouin C, Caputo E, Krack P, Fraix V, Klinger H, Chabardes S, Foote K, Benabid AL, Pollak P. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75:834–9.

    Article  Google Scholar 

  90. Kulisevsky J, Berthier ML, Gironell A, Gironell A, Pascual-Sedano B, Molet J, Pares P. Secondary mania following subthalamic nucleus deep brain stimulation for the treatment of Parkinson’s disease [abstract]. Neurology. 2001;56:S49.

    Google Scholar 

  91. Krack P, Kumar R, Ardouin C, Limousin-Dowsey P, McVicker JM, Benabid AL, Pollak P. Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord. 2001;16:867–75.

    Article  Google Scholar 

  92. Diederich NJ, Alesch F, Goetz CG. Visual hallucinations induced by deep brain stimulation in Parkinson’s disease. Clin Neuropharmacol. 2000;23:287–9.

    Article  Google Scholar 

  93. Castelli L, Perozzo P, Zibetti M, Crivelli B, Morabito U, Lanotte M, Cossa F, Bergamasco B, Lopiano L. Chronic deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: Effects on cognition, mood, anxiety and personality traits. Eur Neurol. 2006;55:136–44.

    Article  Google Scholar 

  94. Daniele A, Albanese A, Contarino MF, Zinzi P, Barbier A, Gasparini F, Romito LMA, Bentivoglio AR, Scerrati M. Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74:175–82.

    Article  Google Scholar 

  95. Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Botzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomized, multicentre study. Lancet Neurol. 2008;7:605–14.

    Article  Google Scholar 

  96. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schupbach M, et al. A multicentre study on suicide outcome following subthalamic stimulation for Parkinson’s disease. Brain. 2008;131:2720–8.

    Article  Google Scholar 

  97. Ardouin C, Voon V, Worbe Y, Abouazar N, Czernecki V, Hosseini H, et al. Pathological gambling in parkinon’s disease improves on chronic subthalamic nucleus stimulation. Mov Disord. 2006;21:1941–6.

    Article  Google Scholar 

  98. Brun DJ, Troster AI. Neuropsychiatric complications of medical and surgical therapies for Parkinson’s disease. J Geriatr Psychiatry Neurol. 2004;17:172–80.

    Article  Google Scholar 

  99. Papapetropoulos S, Katzen H, Schrag A, Singer C, Scanlon BK, Nation D, Guevara A, Levin B. A questionnaire-based (UM-PDHQ) study of hallucinations in Parkinson’s disease. BMC Neurol. 2008;8:21.

    Article  Google Scholar 

  100. Yoshida F, Miyagi Y, Kishimoto J, Morioka T, Murakami N, Hashiguchi K, Samura K, et al. Subthalamic nucleus stimulation does not cause deterioration of preexisting hallucinations in Parkinson’s disease patients. Sterotact Funct Neurosurg. 2009;87:45–9.

    Article  Google Scholar 

  101. Siderowf A, Jaggi JL, Xie SX, Loveland-Jones C, Leng L, Hurtig H, Colcher A, Stern M, Chou KL, Liang G, Maccarone H, Simuni T, Baltuch G. Long-term effects of bilateral subthalamic nucleus stimulation on health-related quality of life in advanced Parkinson’s disease. Mov Disord. 2006;21:746–53.

    Article  Google Scholar 

  102. Lezcano E, Gomez-Esteban JC, Zarranz JJ, Lambarri I, Madoz P, Bilbao G, Pomposo I, Garibi J. Improvement in quality of life in patients with advanced Parkinson’s disease following bilateral deep-brain stimulation in subthalamic nucleus. Eur J Neurol. 2004;11:451–4.

    Article  Google Scholar 

  103. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349:1925–34.

    Article  Google Scholar 

  104. Derost PP, Ouchchane L, Morand D, Ulla M, Llorca PM, Barget M, Debilly B, Lemaire JJ, Durif F. Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology. 2007;68(17):1345–55.

    Article  Google Scholar 

  105. Den Oudsten BL, Van Heck GL, De Vries J. Quality of life and related concepts in Parkinson’s disease: a systemic review. Mov Disord. 2007;22:1528–37.

    Article  Google Scholar 

  106. Diamond A, Jankovic J. The effect of deep brain stimulation on quality of life in movement disorders. J Neurol Neurosurg Psychiatry. 2005;76:188–1193.

    Article  Google Scholar 

  107. Martinez-Martin P, Deuschl G. Effect of medical and surgical interventions on health-related quality of life in Parkinson’s disease. Mov Disord. 2007;22:757–65.

    Article  Google Scholar 

  108. Antonini A, Landi A, Mariani C, DeNotaris R, Pezzoli G. Deep brain stimulation and its effect on sleep in Parkinson’s disease. Sleep Med. 2004;5:211–4.

    Article  Google Scholar 

  109. Cicolin A, Lopiano L, Zibetti M, Torre E, Tavella A, Guastamacchia G, Terreni A, Makrydakis G, Fattori E, Lanotte MM, Bergamasco B, Mutani R. Effects of deep brain stimulation on the subthalamic nucleus on sleep architecture in parkinsonian patients. Sleep Med. 2004;5:207–10.

    Article  Google Scholar 

  110. Kim HJ, Jeon BS, Lee JY, Paek SH, Kim DG. The benefit of subthalamic deep brain stimulation for pain in Parkinson disease: a 2-year follow-up study. Neurosurgery. 2012;70(1):18–23.

    Article  Google Scholar 

  111. Wang X-H, Zhang L, Sperry L, Olichney J, Farias ST, Shahlaie K, Chang NM, Liu Y, Wang S-P, Wang C. Target selection recommendations based on impact of deep brain stimulation surgeries on nonmotor symptoms of Parkinson’s disease. Chin Med J (Engl). 2015;128(24):3371–80.

    Article  Google Scholar 

  112. Maruo T, Saitoh Y, Hosomi K, Kishima H, Shimokawa T, Hirata M, Goto T, Morris S, Harada Y, Yanagisawa T, Aly MM, Yoshimine T. Deep brain stimulation of the subthalamic nucleus improves temperature sensation in patients with Parkinson’s disease. Pain. 2011;152(4):860–5.

    Article  Google Scholar 

  113. Witjas T, Kaphan E, Regis J, Jouve E, Cherif AA, Peragut JC, Azulay JP. Effects of chronic subthalamic stimulation on nonmotor fluctuations in Parkinson’s disease. Mov Disord. 2007;22(12):1729–34.

    Article  Google Scholar 

  114. Herzog J, Weiss PH, Assmus A, Wefer B, Seif C, Braun PM, Pinsker MO, Herzog H, Volkmann J, Deuschl G, Fink GR. Improved sensory gating of urinary bladder afferents in Parkinson’s disease following subthalamic stimulation. Brain. 2008;131:132–45.

    Article  Google Scholar 

  115. Winge K, Nielsen KK, Stimpel H, Lokkegaard A, Jensen SR, Werdelin L. Lower urinary tract symptoms and bladder control in advanced Parkinson’s disease: effects of deep brain stimulation in the subthalamic nucleus. Mov Disord. 2007;22(2):220–5.

    Article  Google Scholar 

  116. Zibetti M, Torre E, Cinquepalmi A, Rosso M, Ducati A, Bergamasco B, Lanotte M, Lopiano L. Motor and nonmotor symptom follow-up in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. Eur Neurol. 2007;58(4):218–23.

    Article  Google Scholar 

  117. Tan ZG, Zhou Q, Huang T, Jiang Y. Efficacies of globus pallidus stimulation and subthalamic nucleus stimulation for advanced Parkinson’s disease: a meta-analysis of randomized controlled trials. Clin Interv Aging. 2016;11:777–86.

    Google Scholar 

  118. Pillon B. Neuropsychological assessment for management of patients with deep brain stimulation. Mov Disord. 2002;17:S116–22.

    Article  Google Scholar 

  119. Pillon B, Dubois B, Agid Y. Testing cognition may contribute to the diagnosis of movement disorders. Neurology. 1996;46:329–33.

    Article  Google Scholar 

  120. Mattis S. Dementia rating scale. Odessa, FL: Psychological Assessment Resources; 1988.

    Google Scholar 

  121. Grober E, Buschke H. Genuine memory deficits in dementia. Dev Neuropsychol. 1987;3:13–36.

    Article  Google Scholar 

  122. Kaplan EF, Goodglass H, Weintraub S. The Boston Naming Test. 2nd ed. Philadelphia, PA: Lea and Febiger; 1983.

    Google Scholar 

  123. Heilman KM, Gonzalez Rothi LJ. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical Neuropsychology. 2nd ed. Oxford, England: Oxford University; 2003. p. 215–35.

    Google Scholar 

  124. Meyers J, Meyers K. The Meyers scoring system for the Rey Complex Figure and the Recognition Trial: professional manual. Odessa: Psychological Assessment Resources; 1995.

    Google Scholar 

  125. Montgomery SA, Asberg MA. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    Article  Google Scholar 

  126. Jurica PJ, Leitten CL, Mattis S. Dementia Rating Scale-2: professional manual. Lutz: Psychological Assessment Resources; 2001.

    Google Scholar 

  127. Folstein MF, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  Google Scholar 

  128. Wechsler D. Wechsler Abbreviated Scales of Intelligence. San Antonio, TX: Psychological Corporation; 1999.

    Google Scholar 

  129. Gronwall DM. Paced Auditory Serial Addition Task: a measure of recovery from concussion. Percept Mot Skills. 1977;44:363–73.

    Article  Google Scholar 

  130. Brandt J, Benedict RHB. The Hopkins Verbal Learning Test Revised: professional manual. Odessa, FL: Psychological Assessment Resources; 2002.

    Google Scholar 

  131. Wechsler D. Wechsler Memory Scale: manual. 3rd ed. San Antonio, TX: Psychological Corporation; 1997a.

    Google Scholar 

  132. Benton AL, Hamsher K, Sivan AB. Multilingual Aphasia Examination—Third Edition. 3rd ed. Iowa City, IA: AJA Associates; 1983a.

    Google Scholar 

  133. Benton AL, Hamsher K, Varney NR, Spreen O. Contributions to Neuropsychological Assessment. A clinical manual. New York, NY: Oxford University; 1983b.

    Google Scholar 

  134. Golden CJ. Stroop Color and Word Test: a manual for clinical and experimental uses. Cleveland, OH: Stoelting Co; 1978.

    Google Scholar 

  135. Randt CT, Brown ER. Administration Manual: Randt Memory Test. Bayport, NY: Life Science Associates; 1983.

    Google Scholar 

  136. Smith A. Symbol Digit Modalities Test: manual. Los Angeles, CA: Western Psychological Services; 1982.

    Google Scholar 

  137. Kongs SK, Thompson LL, Iverson GL, Heaton RK. Wisconsin Card Sorting Test-64 Card Version. Lutz, FL: Psychological Assessment Resources; 2000.

    Google Scholar 

  138. Luria AR. Higher Cortical Functions in Man. New York, NY: Basic Books; 1980.

    Book  Google Scholar 

  139. Grace J, Malloy P. Frontal Systems Behavior Scale (FrSBe): professional manual. Lutz, FL: Psychological Assessment Resources; 2001.

    Google Scholar 

  140. Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test-Second Edition, Adult Version manual. San Antonio, TX: The Psychological Corporation; 2000.

    Google Scholar 

  141. Benedict RHB. Brief Visuospatial Memory Test-Revised: manual. Odessa, FL: Psychological Assessment Resources; 1997.

    Google Scholar 

  142. Goodglass H, Kaplan E. Boston diagnostic aphasia examination. Philadelphia, PA: Lea and Febiger; 1983.

    Google Scholar 

  143. Hooper H. Hooper Visual Organization Test (HVOT). Los Angeles: Western Psychological Services; 1983.

    Google Scholar 

  144. Beck AT, Steer RA, Brown GK. BDI-II, Beck depression inventory: manual. 2nd ed. Boston, MA: Harcourt Brace; 1996.

    Google Scholar 

  145. Beck AT, Steer RA. Beck anxiety inventory: manual. San Antonio, TX: Psychological Corporation; 1990.

    Google Scholar 

  146. Deuschel G, Wenzelburger R, Loffler K, Raethjen J, Stolze H. Essential tremor and cerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain. 2000;123:1568–80.

    Article  Google Scholar 

  147. Louis ED, Ford B, Wendt KJ, Cameron G. Clinical characteristics of essential tremor: data from a community-based study. Mov Disord. 1998;13:803–8.

    Article  Google Scholar 

  148. Deuschl G, Bain P. Deep brain stimulation for trauma: patient selection and evaluation. Mov Disord. 2002;17:S102–11.

    Article  Google Scholar 

  149. Pollak P, Benabid AL, Krack P, Lomousin P, Benazzouz A. Deep brain stimulation. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore, MD: Williams and Wilkoins; 1998. p. 1085–102.

    Google Scholar 

  150. Pahwa R, Lyons KL, Wilkonson SB, Carpenter MA, Troster AI, Searl JO, Overman J, Pickering S, Koller WC. Bilateral thalamic stimulation for the treatment of essential tremor. Neurology. 1999;53:1447–50.

    Article  Google Scholar 

  151. Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MO, Speelman JD. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342:461–8.

    Article  Google Scholar 

  152. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013. p. 81–5.

    Book  Google Scholar 

  153. Serrvello D, Sassi M, Porta M. Deep brain stimulation in Tourette syndrome. Clin Neuropsychiatry. 2009;6:266–73.

    Google Scholar 

  154. Schrock LE, Mink JW, Woods DW, Porta M, Servello D, Visser-Vandewalle V, Silburn PA, Foltynie T, Walker HC, Shahed-Jimenez J, Savica R, Klassen BT, Machado AG, Foote KD, Zhang JG, Hu W, Ackermans L, Temel Y, Mari Z, Changizi BK, Lozano A, Auyeung M, Kaido T, Agid Y, Welter ML, Khandhar SM, Mogilner AY, Pourfar MH, Walter BL, Juncos JL, Gross RE, Kuhn J, Leckman JF, Neimat JA, Okun MS. Tourette Syndrome Association International Deep Brain Stimulation (DBS) Database and Registry Study Group. Tourette syndrome deep brain stimulation: A review and updated recommendations. Mov Disord. 2015;30(4):448–71.

    Article  Google Scholar 

  155. Temel Y, Visser-Vandewalle V. Surgery in Tourette syndrome. Mov Disord. 2004;19:3–14.

    Article  Google Scholar 

  156. Houeto JL, Karachi C, Mallet L, Pillon B, Yelnik J, Mesnage V, Welter ML, Navarro S, Pelissolo A, Damier P, Pidoux B, Dormont D, Cornu P, Agid Y. Tourette’s syndrome and deep brain stimulation. J Neurol Neurosurg Psychiatry. 2005;76:992–5.

    Article  Google Scholar 

  157. Servello D, Porta M, Sassi M, Brambilla A, Robertson MM. Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J Neurol Neurosurg Psychiatry. 2008;79:136–42.

    Article  Google Scholar 

  158. Alterman RL, Dumitriu D, Mathew S. Deep brain stimulation for major depressive disorder. Clin Neuropsychiatry. 2009;6:259–65.

    Google Scholar 

  159. Dowman J, Patel A, Rajput K. Electroconvulsive therapy: attitudes and misconceptions. J Electroconvulsive Therapy. 2005;21:84–7.

    Google Scholar 

  160. Daban C, Martinez-Aran A, Cruz N, Vieta E. Safety and efficacy of Vagus Nerve Stimulation in treatment-resistant depression. A systematic review. J Affect Disord. 2008;110:1–15.

    Article  Google Scholar 

  161. Loo CK, MaFarquhar TF, Mitchell PB. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol. 2008;11:131–47.

    Article  Google Scholar 

  162. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66:522–6.

    Article  Google Scholar 

  163. Jimenez F, Velasco F, Salin-Pascual R, Hernandez JA, Velasco M, Criales JL, Nicolini H. A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery. 2005;57:585–93.

    Article  Google Scholar 

  164. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  Google Scholar 

  165. Schlaepfer TE, Lieb K. Deep brain stimulation for treatment of refractory depression. Lancet. 2005;366:1420–2.

    Article  Google Scholar 

  166. Lozano AM, Maybery HS, Giacobbe O, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulated gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64:461–7.

    Article  Google Scholar 

  167. Malone DA Jr, Doughtery DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Jubu CS, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  Google Scholar 

  168. Wang X, Chang C, Geng N, Li N, Wang J, Ma J, Xue W, Zhao W, Wu H, Wang P, Gao G. Long-term effects of bilateral deep brain stimulation of the subthalamic nucleus on depression in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2009;15:587–91.

    Article  Google Scholar 

  169. Lakhan SE, Callaway E. Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review. BMC Research Notes. 2010;3:60.

    Article  Google Scholar 

  170. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354:1526.

    Article  Google Scholar 

  171. Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gilen F, Demeulemeester HG. Long-term electrical capsular simulation in patients with obsessive-compulsive disorder. Neurosurgery. 2003;52:1263–72.

    Article  Google Scholar 

  172. Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gielen F, Demeulemeester HG. Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery. 2008;62:966–77.

    Article  Google Scholar 

  173. Gabriels L, Cosyns P, Nuttin B, Demeulemeester H, Gybels J. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases. Acta Psychiatr Scand. 2003;107:275–82.

    Article  Google Scholar 

  174. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M, Taylor SF, Martis B, Giordani B. Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry. 2005;57:510–6.

    Article  Google Scholar 

  175. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorder. J Chem Neuroanat. 2003;26:293–9.

    Article  Google Scholar 

  176. Aouizerate B, Cuny E, Bardinet E, Yelnik J, Martin-Guehl C, Rotge JY, Rougier A, Bioulac B, Tignol J, Mallet L, et al. Distinct striatal targets in treating obsessive-compulsive disorder and major depression. J Neurosurg. 2009;111:775–9.

    Article  Google Scholar 

  177. Jimenez F, Velasco F, Salin-Pascual R, Velasco M, Nicolini H, Velasco AL, Castro G. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder. Acta Neurochir. 2007;97:S393–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Mattis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattis, P.J., Fridman, C.B., Meltzer, E. (2019). Neuropsychological Considerations for Parkinson’s Disease Patients Being Considered for Surgical Intervention with Deep Brain Stimulation. In: Ravdin, L.D., Katzen, H.L. (eds) Handbook on the Neuropsychology of Aging and Dementia. Clinical Handbooks in Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-319-93497-6_35

Download citation

Publish with us

Policies and ethics