Smartphone Sensing Technologies for Tailored Parkinson’s Disease Diagnosis and Monitoring

  • Gabriela PostolacheEmail author
  • Octavian Postolache
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


Parkinsonian syndromes are a heterogeneous entity of movement disorders, with various described subtypes. This systematic review aimed to examine the available literature on smartphone applications for assessment of Parkinson’s disease motor and nonmotor symptoms and signs. Papers published from 2013 to 2017, listed in two electronic databases—IEEE Xplore and PubMed—were searched, to identify the works related with smartphone use for PD patients’ diagnosis and monitoring. Full-text articles were analyzed to evaluate the quality of the reported methods and results, considering the validity, reliability, and sensitivity of the techniques used in the measurements as well as the Grading of Recommendations Assessment, Development and Evaluation guideline. The data from 26 full-text articles suggest that many and relevant data can be collected automatically and accurately via mobile phone. Inertial measurement units as well as capacitive, force/pressure, acoustic sensors were used for the development of smartphone-based tools to improve assessment and monitor symptoms and signs of Parkinson’s disease. Smartphone-based information on upper limbs tremor, gait, posture, balance, activities, and speech may improve quality of healthcare services for Parkinson’s disease patients and their quality of life.


smartphone Parkinson’s disease Diagnosis 



This work was supported by Fundação para a Ciência e a Tecnologia, project PTDC/DTT-DES/6776/2014, and Instituto de Telecomunicações, Portugal.


  1. 1.
    Horsman J, Furlong W, Feeny D, Torrance G (2003) The health utilities index (HUI®): concepts, measurement properties and applications. Health Qual Life Outcomes 1(54):1–13CrossRefGoogle Scholar
  2. 2.
    Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones, LondonGoogle Scholar
  3. 3.
    Parkinson J (2002) An essay on the shaking palsy. J Neuropsichiatry Clin Neurosci 14:223–236CrossRefGoogle Scholar
  4. 4.
    Goetz GC (2011) The history of Parkinson’s disease: early clinical description and neurological therapies. Cold Spring Harb Perspect Med 1(1):a008862CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Surathi P, Jhunjhunwala K, Yadav R, Pal PK (2016) Research in Parkinson’s disease in India: a review. Ann Indian Acad Neurol 19(1):9–20CrossRefGoogle Scholar
  7. 7.
    Lingor P, Liman J, Kallenberg K, Sahlmann CO, Bahr M (2011) In Diagnosis and Treatment of Parkinson’s disease, Abdul Qayyum Rana (Ed), InTech,
  8. 8.
    Quinttenbaum BH, Grahn B (2004) Quality of life and pain in Parkinson’s disease: a controlled cross-sectional study. Parkinsonism Relat Disord 10(3), 129–136Google Scholar
  9. 9.
    Palacios N, Gao X, Schwarzschild M, Ascherio A (2012) Declining quality of life in Parkinson disease before and after diagnosis. J Parkinsons dis 2(2):153–160Google Scholar
  10. 10.
    Marko-Kucsera M, Kullmann L, Palik E (2017) Measuring quality of life in individuals with Parkinson’s disease attending a self-help club: cross-sectional study in Hungary. Int J Rehabil Res 41:81–83CrossRefGoogle Scholar
  11. 11.
    Willis AW, Schootman M, Evanoff BA, Perlmutter JS, Racette BA (2011) Neurologist care in Parkinson disease. A utilization, outcomes, and survival study. Neurology 77(9):851–857CrossRefGoogle Scholar
  12. 12.
    Lokk J (2011) Lack of information and access to advanced treatment for Parkinson’s disease patients. J Multidiscip Healthc 4:433–439CrossRefGoogle Scholar
  13. 13.
    Horak FB, Mancini M (2013) Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov Disord 28(11):1544–1551CrossRefGoogle Scholar
  14. 14.
    Wang J, Hoekstra JG, Zuo C, Cook TJ, Zhang J (2013) Biomarkers of Parkinson’s disease: current status and future. Drug Discov. Today 18(3–4):155–162CrossRefGoogle Scholar
  15. 15.
    Delenclos M, Jones DR, McLean PJ, Uitti RJ (2016) Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord 22:S106–S110CrossRefGoogle Scholar
  16. 16.
    Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (2016) Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86(6):566–576CrossRefGoogle Scholar
  17. 17.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinic-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184CrossRefGoogle Scholar
  18. 18.
    Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain J. Neurol. 125(PT(4)):861–870CrossRefGoogle Scholar
  19. 19.
    Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, Goetz CG, Golbe LI, Grafman J, Growdon JH, Hallet M, Jankovic J, Quinn NP, Tolosa E, Zee DS (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47(1):1–9CrossRefGoogle Scholar
  20. 20.
    Litvan I, Goetz CG, Jankovic J, Wenning GK, Booth V, Bartko JJ, McKee A, Jellinger K, Lai EC, Brandel JP, Venny M, Chaudhuri KR, Pearce RK, Agid Y (1997) What is accuracy of the clinical diagnosis of multiple system atrophy? A clinicopathological study. Arch Neurol 54(8):937–944CrossRefGoogle Scholar
  21. 21.
    Aerts MB, Esselink RAJ, Abdo WF, Meijer FJA, Drost G, Norgren N, Janssen MJR, Borm GF, Verbeek MM (2015) Ancillary investigations to diagnose parkinsonism: a prospective clinical study. J Neurol 262:346–356CrossRefGoogle Scholar
  22. 22.
    Fahn S, Elton RL (1987) Members of the UPDRS development committee. Unified Parkinson’s disease rating scale. Macmillan Healthcare Information, Florham ParkGoogle Scholar
  23. 23.
    Rabey JM, Bass H, Bonuccelli U, Brooks D, Klotz P, Korczyn AD, Kraus P, Martinez-Martin P, Morrish P, van Sauten W, van Hilten B (1997) Evaluation of the short Parkinson’s evaluation scale: a new friendly scale for the evaluation of Parkinson’s disease in clinical drug trials. Clin Neuropharmacol 20:322e37CrossRefGoogle Scholar
  24. 24.
    Marinus J, Visser M, Stiggelbout AM, Rabey JM, Martinez-Martin P, Bonuccelli U, Kraus PH, van Hilten JJ (2004) A short scale for the assessment of motor impairments and disabilities in Parkinson’s disease: the SPES/SCOPA. J Neurol Neurosurg Psychiatry 75:388e95CrossRefGoogle Scholar
  25. 25.
    Martinez-Martin P, Benito-Leon J, Burguera JA, Castro A, Linazasoro G, Martinez-Castrillo JC, Valldeoriola F, Vazquez A, Vivancos F, del Val J, van Blercom N, Frades B (2005) The SCOPA-motor scale for assessment of Parkinson’s disease is a consistent and valid measure. J Clin Epidemiol 58:674e9CrossRefGoogle Scholar
  26. 26.
    Movement disorder Society task force on rating scales for Parkinson’s disease (2003). The unified Parkinson’s disease rating scale (UPDRS): status and recommendations. Mov Disord 18(7):738–50Google Scholar
  27. 27.
    Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N (2008) Movement Disorder Society UPDRS revision task force. Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Massano J, Bhatia KP (2012) Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2(2):a008870Google Scholar
  30. 30.
    Krishnan S, Sarma G, Sarma S, Kishore A (2011) Do non-motor symptoms in Parkinson’s disease differ from normal aging? Mov Disord 26:2110–2113CrossRefGoogle Scholar
  31. 31.
    Khoo TK, Yarnall AJ, Duncan GW, Coleman S, O’Brien JT, Brooks DJ, Barker RA, Burn DJ (2013) The spectrum of non-motor symptoms in Parkinson’s disease. Neurology 80:276–281CrossRefGoogle Scholar
  32. 32.
    Walter U, Kleinschmidt S, Rimmele F, Wunderlich C, Gemede I, Benecke R, Busse K (2013) Potential impact of self-perceived prodromal symptoms on the early diagnosis of Parkinson’s disease. J Neurol 260(12):3077–3085CrossRefGoogle Scholar
  33. 33.
    Postuma RB, Lamg AE, Gagnon JF, Pelletier A, Montplaisir JY (2012) How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behavior disorder. Brain 135:1860–1870CrossRefGoogle Scholar
  34. 34.
    Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L, Lang AE, Liepelt-Scarfone I, Litvan I, Marek K, Obeso J, Oertel W, Olanow W, Poewe W, Stern M, Deuschl G (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord 30(12):1600–1609CrossRefGoogle Scholar
  35. 35.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(PT 5):2283–2301CrossRefGoogle Scholar
  36. 36.
    Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1599CrossRefGoogle Scholar
  37. 37.
    Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW, Zaza S (2004) GRADE working group. Grading quality of evidence and strength of recommendations. BMJ 328:1490CrossRefGoogle Scholar
  38. 38.
    Schunemann AH, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, Williams JW, Kunz R, Craig J, Montori UM, Bossuyt P, Guyatt GH (2008) Rating quality of evidence and strength of recommendations. GRADE: grading quality of evidence and strength recommendations for diagnostic tests and strategies. BMJ 336:1106–1110CrossRefGoogle Scholar
  39. 39.
    Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3(25):1–13Google Scholar
  40. 40.
    Milosevic M, Jovanov E, Milenkovic A (2013) Quantifying timed-up-and-go test: a smartphone implementation. In: Proc. IEEE international conference on body sensor networks, BSN 2013, Cambridge, MA, USA, 6–9 May 2013Google Scholar
  41. 41.
    Graça R, Sarmento e Castro R, Cevada J (2014) ParkDetect: early diagnosing Parkinson’s disease. In: Proc. IEEE international symposium on medical measurements and applications (MeMeA), 36th IEEE EMBC, Chicago, Illinois, USA, 26–30 August 2014Google Scholar
  42. 42.
    Kostikis N, Hristu-Varsakelis D, Arnaoutogloy M, Kotsavasiloglou C (2014) Smartphonebased evaluation of parkinsonian hand tremor: quantitative measurements vs clinical assessment scores. In: Proc. 10th IEEE IASME, Senigallia Ancona, Italy, 10–12 September 2014Google Scholar
  43. 43.
    Pepa L. Ciabattoni L. Verdini F, Capecci M, Ceravolo MG (2014) Smartphone based fuzzy logic freezing of gait detection in Parkinson’s disease. In: Proc. IEEE/ASME 10th international conference on mechatronic and embedded systems and applications (MESA), 2014, pp 1–6Google Scholar
  44. 44.
    Printy BP, Renken LM, Herrmann JP, Lee I, Johnson B, Knight E, Varga G, Whitmer, D (2014) Smartphone application for classification of motor impairment severity in Parkinson’s disease. In: Proc. 36th IEEE EMBC, Chicago, Illinois, USA, 26–30 August 2014Google Scholar
  45. 45.
    Arora S, Venkataraman V, Zhan A, Donohuc S, Biglan KM, Dorsey ER, Little MA (2015) Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: a pilot study. Parkinsonism Relat Disord 21:650–653CrossRefGoogle Scholar
  46. 46.
    Ayena JC, Chapwouo LD, Otis MJD, Menelas BAJ (2015) An efficient home-based risk of falling assessment test based on smartphone and instrumented insole. In: Proc. IEEE MeMeA, Torino, Italy, 7–9 May 2015Google Scholar
  47. 47.
    Bazgir O, Frounchi J, Habibi SAH, Palma L, Pierleoni P (2015) A neural network system for diagnosis and assessment of tremor in parkinson disease patients. In: Proc. 22nd Iranian Conference on Biomed Engineering, Tehran, Iran, 25–27 November 2015Google Scholar
  48. 48.
    Ferreira JJ, Godinho C, Santos AT, Domingos J, Abreu D, Lobo R, Gonçalves N, Barra M, Larsen F, Fagerbakke O, Akeren I, Wangen H, Serrano JA, Weber P, Thoms A, Meckler S, Sollinger S, van Uem J, Hobert MA, Maier KS, Matthew H, Isaacs T, Duffen J, Graessner M, Maetzler W (2015) Quantitative home-based assessment of Parkinson’s symptoms: the SENSE-PARK feasibility and usability study. BMC Neurol 15(89):1–7Google Scholar
  49. 49.
    Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, Schlaug G, Wang Y (2015) A validated smartphone based assessment of gait and gait variability in Parkinson’s disease. PLoSONE 10(10):e0141694CrossRefGoogle Scholar
  50. 50.
    Kim H, Lee HJ, Lee W, Kwon S, Kim SK, Jeon HS, Park H, Shin CW, Yi WJ, Jeon BS, Park KS (2015) Unconstrained detection of freezing of gait in Parkinson’s disease patients using smartphone. In: Proc. 37th IEEE EMBC, Milan, Italy, 25–29 August 2015Google Scholar
  51. 51.
    Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, Kotsavasiloglou C et al (2015) IEEE Journal of Biomedical and Health Informatics 19(6):1835–1842CrossRefGoogle Scholar
  52. 52.
    Lan K-C, Shih W-Y (2015) Early detection of neurological disease using a smartphone: a case study. In: Proc. 9th international conference on sensing technology ICST, Auckland, New Zealand, 8–10 December 2015Google Scholar
  53. 53.
    Pepa L, Capecci M, Verdini F, Ceravolo MG, Spalazzi L (2015) An architecture to manage motor disorders in Parkinson’s disease. In: Proc. IEEE World Forum on Internet of Things, Milan, Italy, 14–16 December 2015Google Scholar
  54. 54.
    Pepa L, Verdini F, Capecci M, Pepa L, Verdini F, Ceravolo MG (2016) A smartphone based architecture to detect and quantify freezing of gait in Parkinson’s disease. Gait & Posture, 50:28–33Google Scholar
  55. 55.
    Assis S, Costa P, Jose Rosas M, Vaz R, Silva Cunha JP (2016) An adaptive model approach for quantitative wrist rigidity evaluation during deep brain stimulation surgery. In: Proc. 38th IEEE EMBC, Disney’s Contemporary Resort, Orlando, FL, USA, 16–20 August 2016Google Scholar
  56. 56.
    Cancela J, Mascato SV, Gatsios D, Rigas G, Marcante A, Gentile G, Biundo R, Giglio M, Chondrogiorgi M, Vilzmann R, Konitsiotis S, Antonini A; Arredondo MT, Fotiadis DI (2016) IEEE on behalf of the PD_manager consortium. Monitoring of motor and non-motor symptoms of Parkinson’s disease through a mHealth platform. In: Proc. 38th IEEE EMBC, Disney’s Contemporary Resort, Orlando, FL, USA, 16–20 August 2016Google Scholar
  57. 57.
    Contreras R, Huerta M, Sagbay G, LLumiguano C, Bravo M, Bermeo A, Clotet R, Soto A (2016) Tremors quantification in Parkinson patients using smartwatches. In: Proc. IEEE Ecuador technical chapters meeting (ETCM), Guayaquil, Ecuador, 12–14 October 2016Google Scholar
  58. 58.
    Lee CY, Kang SJ, Hong S-K, Ma H-I, Lee U, Kim YJ (2016) A validation study of a smartphone-based finger tapping application for quantitative assessment of bradykinesia in Parkinson’s disease. PLoSONE 11(7):e0158852CrossRefGoogle Scholar
  59. 59.
    Arroyo-Gallego T, Ledesma-Carbayo MJ, Sanchez-Ferro A, Butterworth I, Mendoza CS, Matarazzo M, Montero P, Lopez-Blanco R, Purtas-Martin V, Trincado R, Giancardo L (2017) Detection of motor impairment in Parkinson’s disease via mobile touchscreen typing. IEEE Trans Biomed Eng 64(9):1994–2002CrossRefGoogle Scholar
  60. 60.
    Barrantes S, Sanchez Egea AJ, Gonzalez Rojas HA, Martı MJ, Compta Y, Valldeoriola F, Mezquita ES, Tolosa E, Valls-Solle J (2017) Differential diagnosis between Parkinson’s disease and essential tremor using the smartphone’s accelerometer. PLoS ONE 12(8):e0183843CrossRefGoogle Scholar
  61. 61.
    Cheng W-Y, Scotland A, Lipsmeier F, Kilchenmann T, Jin L, Schjodt-Eriksen J, Wolf D, Zhang-Schaerer Y-P, Garcia IF, Siebourg-Polster J, Soto J, Verselis L, Martin-Facklam M, Boess F, Koller M, Grundman M, Monsch A, Postuma R, Ghosh A, Kremer T, Taylor K, Czech C, Gossens C, Lindemann M (2017) Human activity recognition from sensor-based largescale continuous monitoring of Parkinson’s disease patients. In: Proc. IEEE/ACMinternational conference on connected health: applications, systems and engineering technologies, CHASE, Philadelphia, Pennsylvania, USA, 17–19 July 2017Google Scholar
  62. 62.
    Lee W, Evans A, Williams DR (2017) Subjective perception of sleep benefit in Parkinson’s disease valid or irrelevant? Parkinsonism Relat Disord 42:90–94CrossRefGoogle Scholar
  63. 63.
    Stamate C, Magoulas GD, Kueppers S, Nomikou E, Daskalopoulos I, Luchini MU, Moussouri T, Roussos G (2017) Deep learning Parkinson’s from smartphone data. In: Proc. IEEE international conference on pervasive computing and communications PerCom, Kona, Hawaii, USA, 13–17 March 2017Google Scholar
  64. 64.
    Tsiouris KM, Gatsios D, Rigas G, Miljkovic D, Seljac BK, Bohanec M, Arredondo MT, Antonini A, Konitsiotis S, Koutsouris DD, Fotiadis D (2017) PD_Manager: an mHealth platform for Parkinson’s disease patient management. Healthcare Technology Letters 4(3):102–108CrossRefGoogle Scholar
  65. 65.
    Zhang YN (2017) Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis system implementation. Parkinson’s disease 2017:6209703, 1–11Google Scholar
  66. 66.
    Trister AD, Dorsey ER, Friend SH (2016) Smartphones as new tools in the management and understanding of Parkinson’s disease. NPJ Parkinson’s disease 2:16006CrossRefGoogle Scholar
  67. 67.
    Gravitz L (2016) Monitoring gets personal. Nature 538:S8–S10CrossRefGoogle Scholar
  68. 68.
    Mekyska J, Galaz Z, Mzourek Z, Smekal Z, Rektorova I, Eliasova I, Kostalova M, Mrackova M, Berankova D, Faundez-Zanuy M, L’Opez-de-Ipina K, Alonso-Hernandez JB (2015) Assessing progress of Parkinson’s disease using acoustic analysis of phonation. In: Proceedings of international work conference on bio-inspired intelligence IWOBI, Donostia-San Sebastian, Spain, 9–12 June 2015Google Scholar
  69. 69.
    Smekal Z, Mekyska J, Galaz Z, Mzourek Z Rektorova I, Faundez-Zanuy M (2015) Analysis of phonation in patients with Parkinson’s disease using empirical mode decomposition. In: Proceedings of ISSCS, Iasi, Romania, 9–10 July 2015Google Scholar
  70. 70.
    Orozco-Arroyave JC, Vasquez-Correa JC, Honig F, Arias-Londono JD, Vargas-Bonilla JF, Skodda S, Rusz J, Noth E (2016) Towards an automatic monitoring of the neurological state of Parkinson’s patients from speech. In: Proc. IEEE international conference on acoustic, speech and signal processing ICASSP, Shanghai, China, 20–25 March 2016Google Scholar
  71. 71.
    Arias-Vergara T, Vasquez-Correa JC, Orozco-Arroyave JR, Vargas-Bonilla JF, Haderlein T, Nöth E (2006) Gender–dependent GMM–UBM for tracking Parkinson’s disease progression from speech. In: Proc. speech communication, 12th ITG Conference on Speech Communication, Paderborn, Germany, 5–7 October 2016CrossRefGoogle Scholar
  72. 72.
    Arias-Vergara T, Vasquez-Correa JC, Orozco-Arroyave JR, Vargas-Bonilla JF, Haderlein T, Nöth E (2006) Gender–dependent GMM–UBM for tracking Parkinson’s disease progression from speech. In: Proc. speech communication, 12th ITG Conference on Speech Communication, Paderborn, Germany, October 5–7, 2016Google Scholar
  73. 73.
    Galaz Z, Mekyskaa J, Mzoureka Z, Smekala Z, Rektorovab I, Eliasovab I, Kostalovac M, Mrackovab M, Berankovac D (2015) Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease. Comput Methods Prog Biomed 127:301–317CrossRefGoogle Scholar
  74. 74.
    Galaz Z, Mzourek Z, Mekyska J, Smekal Z, Kiska T, Rektorova I, Orozco-Arroyave J, Daoudi K (2016) Degree of Parkinson’s disease severity estimation based on speech signal processing. In: Proc. 39th International Conference on Telecommunications and Signal Processing, Vienna, Austria, 27–29 June 2016Google Scholar
  75. 75.
    Dykstra A, Adams SG, Jog M (2015) Examining the relationship between speech intensity and self-rated communicative effectiveness in individuals with Parkinson’s disease and hypophonia. J Commun Disord 56:103–112CrossRefGoogle Scholar
  76. 76.
    Zhang HH, Yang L, Liu Y, Wang P, Yin J, Li Y, Qiu M, Zhu X, Yan F (2016) Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech sample. Bio Med Eng OnLine 15(1):1–22CrossRefGoogle Scholar
  77. 77.
    McCaig CM, Adams SC, Dykstra AD, Jog M (2016) Effect of concurrent walking and interlocutor distance on conversational speech intensity and rate in Parkinson’s disease. Gait Posture 43:132–136CrossRefGoogle Scholar
  78. 78.
    Ikui Y, Nakamura H, Sano D, Hyakusoku H, Kishida H, Kudo Y, Joki H, Koyano S, Yamauchi A, Takano S, Tayama N, Hirose H, Oridate N, Tanaka F (2015) An aerodynamic study of phonations in patients with Parkinson disease (PD). J Voice 29(3):273–280CrossRefGoogle Scholar
  79. 79.
    Vasquez-Correa JC, Orozco-Arroyave JR, Noth E (2016) Word accuracy and dynamic time warping to assess intelligibility deficits in patients with Parkinson’s disease. In: Proceedings of 21st Symposium on Signal Processing, Images and Artificial Vision, Bucaramanga, Colombia, August 31–September 2, 2016Google Scholar
  80. 80.
    Postolache G, Carvalho H, Catarino A, Postolache OA (2016) Smart clothes for rehabilitation context technical and technological issues. In: Postolache OA, Mukhopadhyay SC, Jayasundera KP, Swain AK (eds) Sensors for everyday life: healthcare settings, vol 22. Springer international publishing AG, Berlin, pp 185–219CrossRefGoogle Scholar
  81. 81.
    Jones GR, Roland KP, Neubauer NA, Jakobi JM (2017) Handgrip strength related to long-term electromyography: application for assessing functional decline in Parkinson disease. Arch Phys Med Rehabil 98(2):347–352CrossRefGoogle Scholar
  82. 82.
    Lawton M, Baig F, Rolinski M, Ruffman C, Nithi K, May MT, Ben-Shlomo Y, Hu MTM (2015) Parkinson’s disease subtype in the Oxford Parkinson disease Centre (OPDC) discovery cohort. J Parkinson’s disease 5:269–279CrossRefGoogle Scholar
  83. 83.
    Selikhova M, Williams DR, Kempster PA, Holton JL, Revesz T, Lees AJ (2009) A clinico-pathological study of subtype in Parkinson’s disease. Brain 132:2947–2957CrossRefGoogle Scholar
  84. 84.
    Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I (1990) Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson study group. Neurology 40:1529–1534CrossRefGoogle Scholar
  85. 85.
    Stebbins GT, Goetz CG, Burn DJ, Jancovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’disease rating scale. Mov Disord 28:668–670CrossRefGoogle Scholar
  86. 86.
    Kotagal V (2016) Is PG a legitimate motor subtype in Parkinson disease? Ann Clin Transl Neurol 3(6):473–477CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations