Skip to main content

Judged Roughness as a Function of Groove Frequency and Groove Width in 3D-Printed Gratings

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10893)

Abstract

For different types of textures judged roughness has been shown to be an inverted U-shaped function of inter-element spacing when texture amplitude is low [1, 2]. This may be due to an interplay of two “components” that contribute to the skin’s spatial deformation, and thus to a spatial-intensive code to roughness [1, 3, 4]: (1) deformation increases with the depth of the finger’s intrusion between elements, which increases with inter-element spacing until the finger contacts the ground; and (2) skin deformation decreases with a decreasing number of inter-element gaps being simultaneously under the skin, i.e. with the texture’s spatial frequency (which is negatively correlated with inter-element spacing). The present study systematically tested these ideas. We presented participants different series of 3D-printed rectangular grating stimuli, in which the width of the grating’s grooves varied and the spatial frequency of grooves was constant, or vice versa. Participants touched the stimuli without lateral movement and judged roughness using magnitude estimation. As predicted and previously observed, judged roughness increased with groove width and groove frequency. However, the predicted increase with groove frequency, was only found for frequencies below about 0.5 mm−1. For larger frequencies, roughness decreased with increasing frequency. The decrease is at odds with findings from earlier studies that used aluminum rather than plastic gratings [5]. The results corroborate the assumption that the area of skin deformation plays a crucial role for roughness, but at the same time, point to the influence of subtle differences between materials that should be investigated in the future.

Keywords

  • Roughness
  • Texture
  • Perception
  • Bare finger

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93445-7_23
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-93445-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Drewing, K.: Low-amplitude textures explored with the bare finger: roughness judgments follow an inverted U-shaped function of texture period modified by texture type. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) Haptics: Perception, Devices, Control, and Applications, pp. 206–217. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-42324-1_21

    CrossRef  Google Scholar 

  2. Sutu, A., Meftah, E., Chapman, C.E.: Physical determinants of the shape of the psychophysical curve relating tactile roughness to raised-dot spacing: implications for neuronal coding of roughness. J. Neurophysiol. 109, 1403–1415 (2013)

    CrossRef  Google Scholar 

  3. Taylor, M.M., Lederman, S.J.: Tactile roughness of grooved surfaces: a model and the effect of friction. Percept. Psychophys. 17, 23–36 (1975)

    CrossRef  Google Scholar 

  4. Johnson, K.O., Hsiao, S.S.: Evaluation of the relative role of slowly and rapidly adapting fibres in roughness perception. Can. J. Physiol. Pharmacol. 72, 488–497 (1994)

    CrossRef  Google Scholar 

  5. Lederman, S.J., Taylor, M.M.: Fingertip force, surface geometry, and the perception of roughness by active touch. Percept. Psychophys. 12, 401–408 (1972)

    CrossRef  Google Scholar 

  6. Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptic Percept. 6, 81–93 (2013)

    CrossRef  Google Scholar 

  7. Drewing, K., Weyel, C., Celebi, H., Kaya, D.: Feeling and feelings: affective and sensory dimensions of touched materials and their connection. In: Proceedings World Haptics Conference 2017, pp. 25–30 (2017)

    Google Scholar 

  8. Hollins, M., Faldowski, R., Rao, S., Young, F.: Perceptual dimensions of tactile surface texture: a multidimensional-scaling analysis. Percept. Psychophys. 54, 697–705 (1993)

    CrossRef  Google Scholar 

  9. Katz, D.: The world of touch. Erlbaum, Hillsdale (1989). (L. E. Krueger, Trans. & Ed.). [Original work published 1925]

    Google Scholar 

  10. Hollins, M., Bensmaïa, S.J.: The coding of roughness. Can. J. Exp. Psychol. 61, 184–195 (2007)

    CrossRef  Google Scholar 

  11. Hollins, M., Risner, S.R.: Evidence for the duplex theory of tactile texture perception. Percept. Psychophys. 62, 695–705 (2000)

    CrossRef  Google Scholar 

  12. Weber, A.I., Saal, H.P., Lieber, J.D., Cheng, J.W., Manfredi, L.R., Dammann, J.F., Bensmaia, S.J.: Spatial and temporal codes mediate the tactile perception of textures. Proc. Natl. Acad. Sci. 110, 18279–18284 (2013)

    CrossRef  Google Scholar 

  13. Blake, D.T., Johnson, K.O., Hsiao, S.S.: Monkey cutaneous SAI and RA responses to raised and depressed scanned patterns: Effects of width, height, orientation, and a raised surround. J. Neurophysiol. 78, 2503–2517 (1997)

    CrossRef  Google Scholar 

  14. Yoshioka, T., Gibb, B., Dorsch, A.K., Hsiao, S.S., Johnson, K.O.: Neural coding mechanisms underlying perceived roughness of finely textured surfaces. J. Neurosci. 21(17), 6905–6916 (2001)

    CrossRef  Google Scholar 

  15. Lawrence, M.A., Kitada, R., Klatzky, R.L., Lederman, S.J.: Haptic roughness perception of linear gratings via bare finger or rigid probe. Perception 36, 547–557 (2007)

    CrossRef  Google Scholar 

  16. Meftah, E., Belingard, L., Chapman, C.E.: Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res. 132, 351–361 (2000)

    CrossRef  Google Scholar 

  17. Lederman, S.J.: Tactile roughness of grooved surfaces: the touching process and effects of macro- and microsurface structure. Percept. Psychophys. 16, 385–395 (1974)

    CrossRef  Google Scholar 

  18. Eck, J., Kaas, A.L., Mulders, J.L., Goebel, R.: Roughness perception of unfamiliar dot pattern textures. Acta Physiol. (Oxf) 143(1), 20–34 (2013)

    Google Scholar 

  19. Chapman, C.E., Tremblay, F., Jiang, W., Belingard, L., Meftah, E.: Central neural mechanisms contributing to the perception of tactile roughness. Behav. Brain Res. 135, 225–233 (2002)

    CrossRef  Google Scholar 

  20. Dépeault, A., Meftah, E.M., Chapman, C.E.: Tactile perception of roughness: raised-dot spacing, density and disposition. Exp. Brain Res. 197, 235–244 (2009)

    CrossRef  Google Scholar 

  21. Klatzky, R.L., Lederman, S.J., Hamilton, C., Grindley, M., Swendsen, R.H.: Feeling textures through a probe: effects of probe and surface geometry and exploratory factors. Percept. Psychophys. 65, 613–631 (2003)

    CrossRef  Google Scholar 

  22. Gescheider, G.A., Bolanowski, S.J., Greenfield, C.G., Brunette, K.E.: Perception of the tactile texture of raised-dot patterns: a multidimensional analysis. Somatosens. Motor Res. 22, 127–140 (2005)

    CrossRef  Google Scholar 

  23. Connor, C.E., Hsiao, S.S., Phillips, J.R., Johnson, K.O.: Tactile roughness: neural codes that account for psychophysical magnitude estimates. J. Neurosci. 10, 3823–3836 (1990)

    CrossRef  Google Scholar 

  24. Merabet, L., Thut, G., Murray, B., Andrews, J., Hsiao, S., Pascual-Leone, A.: Feeling by sight or seeing by touch? Neuron 42(1), 173–179 (2004)

    CrossRef  Google Scholar 

  25. Cascio, C.J., Sathian, K.: Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21, 5289–5296 (2001)

    CrossRef  Google Scholar 

  26. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64, 153–181 (1957)

    CrossRef  Google Scholar 

  27. Greenhouse, S.W., Geisser, S.: On methods in the analysis of profile data. Psychometrika 24, 95–112 (1959)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

I thank Lorilei Alley for native speaker-advice, Alexandra Lezkan, Anna Metzger and Claire Weyel for help with constructing the stimuli and Bela Ring for conducting the experiment. This research was supported by German Research Foundation (DFG; CRC/TRR135, A05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Drewing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Drewing, K. (2018). Judged Roughness as a Function of Groove Frequency and Groove Width in 3D-Printed Gratings. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10893. Springer, Cham. https://doi.org/10.1007/978-3-319-93445-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93445-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93444-0

  • Online ISBN: 978-3-319-93445-7

  • eBook Packages: Computer ScienceComputer Science (R0)