Frankenstein: A Platform Enabling Reuse of Question Answering Components

  • Kuldeep SinghEmail author
  • Andreas Both
  • Arun Sethupat
  • Saeedeh Shekarpour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)


Recently remarkable trials of the question answering (QA) community yielded in developing core components accomplishing QA tasks. However, implementing a QA system still was costly. While aiming at providing an efficient way for the collaborative development of QA systems, the Frankenstein framework was developed that allows dynamic composition of question answering pipelines based on the input question. In this paper, we are providing a full range of reusable components as independent modules of Frankenstein populating the ecosystem leading to the option of creating many different components and QA systems. Just by using the components described here, 380 different QA systems can be created offering the QA community many new insights. Additionally, we are providing resources which support the performance analyses of QA tasks, QA components, and complete QA systems. Hence, Frankenstein is dedicated to improving the efficiency of the research process w.r.t. QA.


Question answering Reusability Integration Annotation model Evaluation Pipeline 



Parts of this work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642795, project: Answering Questions using Web Data (WDAqua). We thank Maria Esther Vidal for her valuable inputs.


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). Scholar
  2. 2.
    Batory, D.S., O’Malley, S.W.: The design and implementation of hierarchical software systems with reusable components. ACM Trans. Softw. Eng. Methodol. 1, 355–398 (1992)CrossRefGoogle Scholar
  3. 3.
    Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary – a methodology for vocabulary-driven open question answering systems. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). Scholar
  4. 4.
    Diefenbach, D., Singh, K., Both, A., Cherix, D., Lange, C., Auer, S.: The qanary ecosystem: getting new insights by composing question answering pipelines. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 171–189. Springer, Cham (2017). Scholar
  5. 5.
    Dojchinovski, M., Kliegr, T.: real-time classification of entities in text with Wikipedia. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 654–658. Springer, Heidelberg (2013). Scholar
  6. 6.
    Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with Wikipedia pages. IEEE Softw. 29(1), 70–75 (2012)CrossRefGoogle Scholar
  7. 7.
    Ferrández, Ó., Spurk, C., Kouylekov, M., Dornescu, I., Ferrández, S., Negri, M., Izquierdo, R., Tomás, D., Orasan, C., Neumann, G., Magnini, B., González, J.L.V.: The QALL-ME framework: a specifiable-domain multilingual question answering architecture. J. Web Sem. 9(2), 137–145 (2011)CrossRefGoogle Scholar
  8. 8.
    Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the Conference of 43rd Annual Meeting of the Association for Computational Linguistics, ACL 2005, 25–30 June 2005. University of Michigan, USA (2005)Google Scholar
  9. 9.
    Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)CrossRefGoogle Scholar
  10. 10.
    Heineman, G.T., Councill, W.T.: Component-Based Software Engineering. Putting the Pieces Together, p. 5. Addison-Wesley, Boston (2001)Google Scholar
  11. 11.
    Ibrahim, Y., Amir Yosef, M., Weikum, G.: AIDA-social: entity linking on the social stream. In: Exploiting Semantic Annotations in Information Retrieval (2014)Google Scholar
  12. 12.
    Kim, J.-D., Unger, C., Ngonga Ngomo, A.-C., Freitas, A., Hahm, Y.-G., Kim, J., Nam, S., Choi, G.-H., Kim, J.-U., Usbeck, R., et al.: OKBQA framework for collaboration on developing natural language question answering systems (2017)Google Scholar
  13. 13.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, indexing, and retrieval. J. Web Sem., 49–79 (2004)CrossRefGoogle Scholar
  14. 14.
    Marx, E., Usbeck, R., Ngonga Ngomo, A.-C., Höffner, K., Lehmann, J., Auer, S.: Towards an open question answering architecture. In: Proceedings of the 10th International Conference on Semantic Systems, SEMANTICS 2014, Leipzig, Germany, 4–5 September 2014, pp. 57–60. ACM (2014)Google Scholar
  15. 15.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: I-SEMANTICS (2011)Google Scholar
  16. 16.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. TACL 2, 231–244 (2014)Google Scholar
  17. 17.
    Mossakowski, T., Kutz, O., Lange, C.: Three semantics for the core of the distributed ontology language. In: Formal Ontology in Information Systems (2012)Google Scholar
  18. 18.
    Mulang, I.O., Singh, K., Orlandi, F.: Matching natural language relations to knowledge graph properties for question answering. In: Semantics 2017 (2017)Google Scholar
  19. 19.
    Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: a taxonomy of relational patterns with semantic types. In: EMNLP-CoNLL (2012)Google Scholar
  20. 20.
    Neighbors, J.M.: The Draco approach to constructing software from reusable components. IEEE Trans. Softw. Eng. 5, 564–574 (1984)CrossRefGoogle Scholar
  21. 21.
    Shekarpour, S., Marx, E., Ngonga Ngomo, A.-C., Auer, S.: SINA: semantic interpretation of user queries for question answering on interlinked data. J. Web Sem. 30, 39–51 (2015)CrossRefGoogle Scholar
  22. 22.
    Singh, K., Both, A., Diefenbach, D., Shekarpour, S.: Towards a message-driven vocabulary for promoting the interoperability of question answering systems. In: ICSC 2016, CA, USA, pp. 386–389 (2016)Google Scholar
  23. 23.
    Singh, K., Both, A., Diefenbach, D., Shekarpour, S., Cherix, D., Lange, C.: Qanary - the fast track to creating a question answering system with linked data technology. In: ESWC 2016 Satellite Events, Crete, Greece, pp. 183–188 (2016)CrossRefGoogle Scholar
  24. 24.
    Singh, K., Mulang, I.O., Lytra, I., Jaradeh, M.Y., Sakor, A., Vidal, M.-E., Lange, C., Auer, S.: Capturing knowledge in semantically-typed relational patterns to enhance relation linking. In: Proceedings of the Knowledge Capture Conference, K-CAP 2017, Austin, TX, USA (2017)Google Scholar
  25. 25.
    Singh, K., Radhakrishna, A.S., Both, A., Shekarpour, S., Lytra, I., Usbeck, R., Vyas, A., Khikmatullaev, A., Punjani, D., Lange, C., Vidal, M.E., Lehmann, J., Auer, S.: Why reinvent the wheel-let’s build question answering systems together. In: The Web Conference (WWW 2018) (2018, to appear)Google Scholar
  26. 26.
    Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). Scholar
  27. 27.
    Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano, P.: Template-based question answering over RDF data. In: WWW (2012)Google Scholar
  28. 28.
    Unger, C., Forascu, C., López, V., Ngonga Ngomo, A.-C., Cabrio, E., Cimiano, P., Walter, S.: Question answering over linked data (QALD-5). In: Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum, Toulouse, France, 8–11 September 2015. (2015)Google Scholar
  29. 29.
    Usbeck, R., Ngonga Ngomo, A.-C., Bühmann, L., Unger, C.: HAWK-hybrid question answering using linked data. In: Proceedings of The Semantic Web. Latest Advances and New Domains - 12th European Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, 31 May -4 June 2015 (2015)CrossRefGoogle Scholar
  30. 30.
    Usbeck, R., Ngonga Ngomo, A.-C., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.: AGDISTIS - graph-based disambiguation of named entities using linked data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 457–471. Springer, Cham (2014). Scholar
  31. 31.
    Usbeck, R. Röder, M., Hoffmann, M., Conrads, F., Huthmann, J., Ngonga Ngomo, A.-C., Demmler, C., Unger, C.: Benchmarking question answering systems. Semant. Web J. (to be published)Google Scholar
  32. 32.
    Usbeck, R., Röder, M., Ngonga Ngomo, A.-C., Baron, C., Both, A., Brümmer, M., Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., Wesemann, L.: GERBIL: general entity annotator benchmarking framework. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015 (2015)Google Scholar
  33. 33.
    Zafar, H., Napolitano, G., Lehmann, J.: Formal query generation for question answering over knowledge bases. In: ESWC 2018 (2018, to Appear)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kuldeep Singh
    • 1
    Email author
  • Andreas Both
    • 2
  • Arun Sethupat
    • 3
  • Saeedeh Shekarpour
    • 4
  1. 1.Fraunhofer IAISSankt AugustinGermany
  2. 2.DATEV eGNurembergGermany
  3. 3.University of MinnesotaMinneapolisUSA
  4. 4.University of DaytonDaytonUSA

Personalised recommendations