Skip to main content

A Tactile Feedback Glove for Reproducing Realistic Surface Roughness and Continual Lateral Stroking Perception

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10894))

Abstract

Haptic feedback has been widely applied to many virtual reality (VR) applications and electronic products to offer more information and sensation to users. This research aims to recreate lateral stroking stimuli in a virtual environment using a wearable tactile feedback glove. Tactile perception controlling factors for laterally stroking on physical surfaces with different roughnesses were recorded. A neural network was trained to find the driving voltages for the actuators. Piezoelectric actuators were used to create realistic tactile sensations. Two experiments were conducted. One was the roughness discrimination experiment, which was used to test if the participants can match the simulated roughness with physical templates. The other experiment was the continual lateral stroking experiment, which was used to find a representation method which can give users the most realistic continual stroking sensations. User tests showed that the developed tactile feedback system can reproduce realistic surface roughness sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, J.L., Crawford, M., Proske, U., Taylor, J.L., Gandevia, S.C.: Signals of motor command bias joint position sense in the presence of feedback from proprioceptors. J. Appl. Physiol. 106(3), 950–958 (2009)

    Article  Google Scholar 

  2. Santís, M., Jaramillo, D., Pérez, V.Z.: Vibrotactile system for the replication of textures. VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, 26th–28th October 2016. IP, vol. 60, pp. 512–515. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_129

    Chapter  Google Scholar 

  3. Zappi, V., Gaudina, M., Brogni, A., Caldwell, D.: Virtual sequencing with a tactile feedback device. In: Nordahl, R., Serafin, S., Fontana, F., Brewster, S. (eds.) HAID 2010. LNCS, vol. 6306, pp. 149–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15841-4_16

    Chapter  Google Scholar 

  4. Aoki, T., Mitake, H., Keoki, D., Hasegawa, S., Sato, M.: Wearable haptic device to present contact sensation based on cutaneous sensation using thin wire. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, pp. 115–122. ACM (2009)

    Google Scholar 

  5. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., Tachi, S.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH 2007 Emerging Technologies, p. 8. ACM (2007)

    Google Scholar 

  6. Hashimoto, Y., Nakata, S., Kajimoto, H.: Novel tactile display for emotional tactile experience. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, pp. 124–131. ACM (2009)

    Google Scholar 

  7. Wu, C.-M., Hsu, C.-W., Lee, T.-K., Smith, S.: A virtual reality keyboard with realistic haptic feedback in a fully immersive virtual environment. Virtual Reality 21(1), 19–29 (2017)

    Article  Google Scholar 

  8. Nishimura, N., Leonardis, D., Solazzi, M., Frisoli, A., Kajimoto, H.: Wearable encounter-type haptic device with 2-DoF motion and vibration for presentation of friction. In: Haptics Symposium (HAPTICS), pp. 303–306. IEEE (2014)

    Google Scholar 

  9. Kyung, K.-U., Son, S.-W., Kwon, D.-S., Kim, M.-S.: Design of an integrated tactile display system. In: 2004 IEEE International Conference on Robotics and Automation, vol. 1, pp. 776–781. IEEE (2004)

    Google Scholar 

  10. Smith, S., Smith, G., Lee, J.L.: The effects of realistic tactile haptic feedback on user surface texture perception. J. VibroEng. 17(2), 1004–1016 (2015)

    Google Scholar 

  11. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987)

    Article  Google Scholar 

  12. Klatzky, R.L., Lederman, S.J.: Tactile roughness perception with a rigid link interposed between skin and surface. Percept. Psychophys. 61(4), 591–607 (1999)

    Article  Google Scholar 

  13. Kim, S.-Y., Kim, J.-O., Kim, K.Y.: Traveling vibrotactile wave-a new vibrotactile rendering method for mobile devices. IEEE Trans. Consum. Electr. 55(3), 1032–1038 (2009)

    Article  Google Scholar 

  14. Kim, S.-Y., Kim, J.C.: Vibrotactile rendering for a traveling vibrotactile wave based on a haptic processor. IEEE Trans. Haptics 5(1), 14–20 (2012)

    Article  Google Scholar 

  15. Raisamo, J., Raisamo, R., Surakka, V.: Comparison of saltation, amplitude modulation, and a hybrid method of vibrotactile stimulation. IEEE Trans. Haptics 6(4), 517–521 (2013)

    Article  Google Scholar 

  16. Asano, S., Okamoto, S., Yamada, Y.: Vibrotactile stimulation to increase and decrease texture roughness. IEEE Trans. Hum. Mach. Syst. 45(3), 393–398 (2015)

    Article  Google Scholar 

  17. Iizuka, S., Nagano, H., Konyo, M., Tadokoro, S.: Whole hand interaction with multi-finger movement-based vibrotactile stimulation. In: Hasegawa, S., Konyo, M., Kyung, K.-U., Nojima, T., Kajimoto, H. (eds.) AsiaHaptics 2016. LNEE, vol. 432, pp. 157–161. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4157-0_27

    Chapter  Google Scholar 

  18. Cascio, C.J., Sathian, K.: Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21(14), 5289–5296 (2001)

    Article  Google Scholar 

  19. Lederman, S.J.: Tactile roughness of grooved surfaces: the touching process and effects of macro-and microsurface structure. Percept. Psychophys. 16(2), 385–395 (1974)

    Article  Google Scholar 

  20. Taylor, M., Lederman, S.J.: Tactile roughness of grooved surfaces: a model and the effect of friction. Atten. Percept. Psychophys. 17(1), 23–36 (1975)

    Article  Google Scholar 

  21. Lederman, S.J., Taylor, M.M.: Fingertip force, surface geometry, and the perception of roughness by active touch. Atten. Percept. Psychophys. 12(5), 401–408 (1972)

    Article  Google Scholar 

  22. Koeppen, B.M., Stanton, B.A.: Berne & Levy Physiology. Elsevier Health Sciences, Philadelphia (2009)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Ministry of Science and Technology of Taiwan under Contract MOST 106-2221-E-002-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shana Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, PH., Smith, S. (2018). A Tactile Feedback Glove for Reproducing Realistic Surface Roughness and Continual Lateral Stroking Perception. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics