Message-Locked Encryption with File Update

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

Message-locked encryption (MLE) (formalized by Bellare et al. [5]) is an important cryptographic primitive that supports deduplication in the cloud. Updatable block-level message-locked encryption (UMLE) (formalized by Zhao and Chow [13]) adds the update functionality to the MLE. In this paper, we formalize and extensively study a new cryptographic primitive file-updatable message-locked encryption (FMLE). FMLE can be viewed as a generalization of the UMLE, in the sense that unlike the latter, the former does not require the existence of BL-MLE (block-level message-locked encryption). FMLE allows more flexibility and efficient methods for updating the ciphertext and tag.

Our second contribution is the design of two efficient FMLE constructions, namely, RevD-1 and RevD-2, whose design principles are inspired from the very unique reverse decryption functionality of the FP hash function (designed by Paul et al. [11]) and the APE authenticated encryption (designed by Andreeva et al. [2]). With respect to UMLE – which provides so far the most efficient update function – RevD-1 and RevD-2 reduce the total update time by at least 50%, on average. Additionally, our constructions are storage efficient. We also give extensive comparison between our and the existing constructions.

References

  1. 1.
    Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-locked encryption for lock-dependent messages. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 374–391. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_21CrossRefGoogle Scholar
  2. 2.
    Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: APE: authenticated permutation-based encryption for lightweight cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 168–186. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46706-0_9CrossRefMATHGoogle Scholar
  3. 3.
    Bellare, M., Keelveedhi, S.: Interactive message-locked encryption and secure deduplication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 516–538. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_23CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: server-aided encryption for deduplicated storage. In: King, S. (ed.) USENIX 2013, pp. 179–194 (2013)Google Scholar
  5. 5.
    Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 296–312. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_18CrossRefGoogle Scholar
  6. 6.
    Canard, S., Laguillaumie, F., Paindavoine, M.: Verifiable message-locked encryption. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 299–315. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0_18CrossRefGoogle Scholar
  7. 7.
    Chen, R., Mu, Y., Yang, G., Guo, F.: BL-MLE: block-level message-locked encryption for secure large file deduplication. IEEE Trans. Inf. Forensics Secur. 10(12), 2643–2652 (2015).  https://doi.org/10.1109/TIFS.2015.2470221CrossRefGoogle Scholar
  8. 8.
    Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space from duplicate files in a serverless distributed file system. In: ICDCS 2002, pp. 617–624 (2002).  https://doi.org/10.1109/ICDCS.2002.1022312
  9. 9.
    Huang, K., Zhang, X., Wang, X.: Block-level message-locked encryption with polynomial commitment for IoT data. J. Inf. Sci. Eng. (JISE), 33(4), 891–905 (2017). http://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=157_2047
  10. 10.
    Jiang, T., Chen, X., Wu, Q., Ma, J., Susilo, W., Lou, W.: Towards efficient fully randomized message-locked encryption. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 361–375. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40253-6_22CrossRefGoogle Scholar
  11. 11.
    Paul, S., Homsirikamol, E., Gaj, K.: A novel permutation-based hash mode of operation FP and the hash function SAMOSA. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 509–527. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34931-7_29CrossRefGoogle Scholar
  12. 12.
    Wang, H., Chen, K., Qin, B., Lai, X., Wen, Y.: A new construction on randomized message-locked encryption in the standard model via UCEs. Sci. China Inf. Sci. 60(5), 052101 (2017).  https://doi.org/10.1007/s11432-015-1037-2CrossRefGoogle Scholar
  13. 13.
    Zhao, Y., Chow, S.S.M.: Updatable block-level message-locked encryption. In: Karri, R., Sinanoglu, O., Sadeghi, A., Yi, X. (eds.) Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, 2–6 April 2017, pp. 449–460. ACM (2017).  https://doi.org/10.1145/3052973.3053012

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology BhilaiRaipurIndia

Personalised recommendations