Advertisement

Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption on Lattices

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

Boyen and Li [AsiaCrypt, 2016] proposed the first almost tightly secure lattice identity-based encryption scheme in the standard model. The security of such scheme is proved under learning with errors assumption in the single-instance, single-challenge setting. In this work, we show how to extend the Boyen-Li scheme to obtain an almost tight security reduction in the multi-instance, multi-ciphertext setting, in which the security loss incurred is \(\textsf {poly}(\kappa )\) in the security parameter \(\kappa \) and independent of the number of adversarial queries.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefMATHGoogle Scholar
  2. 2.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)Google Scholar
  3. 3.
    Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_4CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryption with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_22CrossRefGoogle Scholar
  5. 5.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_42CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_15CrossRefGoogle Scholar
  7. 7.
    Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_12CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_30CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_23CrossRefGoogle Scholar
  11. 11.
    Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_14CrossRefGoogle Scholar
  12. 12.
    Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 298–331. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_11CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_10CrossRefGoogle Scholar
  14. 14.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106 (2011)Google Scholar
  15. 15.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_1CrossRefGoogle Scholar
  16. 16.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master public key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207–231. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_9CrossRefGoogle Scholar
  18. 18.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  19. 19.
    Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_6CrossRefGoogle Scholar
  20. 20.
    Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_21CrossRefGoogle Scholar
  21. 21.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC, pp. 545–554 (2013)Google Scholar
  22. 22.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_25CrossRefGoogle Scholar
  23. 23.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_35CrossRefGoogle Scholar
  24. 24.
    Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_36CrossRefGoogle Scholar
  25. 25.
    Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_12CrossRefGoogle Scholar
  26. 26.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  27. 27.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations