3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

Multi-Party Computation of Oblivious RAM (MPC ORAM) implements secret-shared random access memory in a way that protects access pattern privacy against a threshold of corruptions. MPC ORAM enables secure computation of any RAM program on large data held by different entities, e.g. MPC processing of database queries on a secret-shared database. MPC ORAM can be constructed by any (client-server) ORAM, but there is an efficiency gap between known MPC ORAM’s and ORAM’s. Current asymptotically best MPC ORAM is implied by an “MPC friendly” variant of Path-ORAM [26] called Circuit-ORAM, due to Wang et al [27]. However, using garbled circuit for Circuit-ORAM’s client implies MPC ORAM which matches Path-ORAM in rounds but increases bandwidth by \(\varOmega (\kappa )\) factor, while using GMW or BGW protocols implies MPC ORAM which matches Path-ORAM in bandwidth, but increases round complexity by \(\varOmega ({\log n}\log {\log n})\) factor, where \(\kappa \) is a security parameter and \(n\) is memory size.

In this paper we bridge the gap between MPC ORAM and client-server ORAM by showing a specialized 3PC ORAM protocol, i.e. MPC ORAM for 3 parties tolerating 1 fault, which uses only symmetric ciphers and asymptotically matches client-server Path-ORAM in round complexity and for large records also in bandwidth.

Our 3PC ORAM also allows for fast pipelined processing: With postponed clean-up it processes \(b\,{=}\,O({\log n})\) accesses in \(O(b\,{+}\,{\log n})\) rounds with \(O(D\,{+}\,\mathsf {poly}({\log n}))\) bandwidth per item, where \(D\) is record size.

References

  1. 1.
    Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 805–817 (2016)Google Scholar
  2. 2.
    Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private information retrieval: PIR with preprocessing. J. Cryptol. 17, 125–151 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM, New York (1988)Google Scholar
  4. 4.
    Bogdanov, D., Kamm, L., Kubo, B.: Students and taxes: a privacy-preserving study using secure computation. In: Proceedings on Privacy Enhancing Technologies (PET), pp. 117–135 (2016)Google Scholar
  5. 5.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88313-5_13CrossRefGoogle Scholar
  6. 6.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03549-4_20CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS 2001. IEEE Computer Society, Washington, DC (2001)Google Scholar
  8. 8.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988, Chicago, Illinois, USA, pp. 11–19 (1988)Google Scholar
  9. 9.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_10CrossRefGoogle Scholar
  11. 11.
    Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion ORAM: a constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 145–174. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_6CrossRefGoogle Scholar
  12. 12.
    Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 523–535. ACM, New York (2017)Google Scholar
  13. 13.
    Dvir, Z., Gopi, S.: 2 server PIR with subpolynomial communication. J. ACM 63(4), 391–3915 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure computation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 360–385. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_16CrossRefGoogle Scholar
  15. 15.
    Fletcher, C.W., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: single online roundtrip, constant bandwidth oblivious RAM. IACR Cryptology ePrint Archive, 2015:1065 (2015)Google Scholar
  16. 16.
    Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimizing ORAM and using it efficiently for secure computation. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39077-7_1CrossRefGoogle Scholar
  17. 17.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)Google Scholar
  18. 18.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: Computer and Communications Security (CCS), CCS 2012, pp. 513–524 (2012)Google Scholar
  20. 20.
    Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_6CrossRefGoogle Scholar
  21. 21.
    Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and fast batch retrieval. IACR Cryptology ePrint Archive, 2018:347 (2018)Google Scholar
  22. 22.
    Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_27CrossRefGoogle Scholar
  23. 23.
    Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 294–303 (1997)Google Scholar
  24. 24.
    Ren, L., Fletcher, C., Kwon, A., Stefanov, E., Shi, E., Van Dijk, M., Devadas, S.: Constants count: practical improvements to oblivious RAM. In: Proceedings of the 24th USENIX Conference on Security Symposium, SEC 2015, pp. 415–430. USENIX Association, Berkeley (2015)Google Scholar
  25. 25.
    Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_11CrossRefGoogle Scholar
  26. 26.
    Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path ORAM: an extremely simple oblivious ram protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer Communications Security, CCS 2013, pp. 299–310. ACM, New York (2013)Google Scholar
  27. 27.
    Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the goldreich-ostrovsky lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015, pp. 850–861 (2015). ACM, New YorkGoogle Scholar
  28. 28.
    Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM: oblivious ram for secure computation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 191–202. ACM, New York (2014)Google Scholar
  29. 29.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS 1982, pp. 160–164 (1982)Google Scholar
  30. 30.
    Zahur, S., Wang, X., Raykova, M., Gascón, A., Doerner, J., Evans, D., Katz, J.: Revisiting square-root ORAM efficient random access in multi-party computation. In: Proceedings of the 37th IEEE Symposium on Security and Privacy (“Oakland”). IEEE 2016 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of CaliforniaIrvineUSA

Personalised recommendations